

Optimierung von Tankreinigungssystemen

Die Spraying Systems Gruppe

Spraying Systems ist internationaler Marktführer in der Sprühtechnik. Wir bieten ein breit gefächertes Angebot an Systemkomponenten und Serviceleistungen wie Tankreinigungsaggregate, Düsen, Düsensteuerungen, Injektordüsen, Düsenlanzen, Entwicklung und Analyse von Sprühsystemen. Seit seiner Gründung 1937 in Chicago, Illinois, USA, hat sich das Unternehmen zu einem global agierenden Anbieter mit 15 Fertigungsstandorten und 90 Vertriebsbüros weltweit entwickelt.

Um unseren Kunden eine noch größere Produktpalette anbieten zu können, ist Spraying Systems eine strategische Allianz mit Cloud-Sellers, einem führenden Anbieter von Tankreinigungssystemen, eingegangen. Spraying Systems vertreibt die Produkte von Cloud-Sellers unter seiner TankJet® Produktlinie.

Für die verschiedensten Anwendungen und Industriezweige entwickeln und produzieren wir Tankreinigungsdüsen und Systeme. Bekannte Markennamen – wie unsere ROKON® (Made in Germany) oder TankJet® – gehören zu der großen Produktlinie von Spraying Systems und machen uns damit zu einem führenden Anbieter von und starken Partner für Tankreinigungssystemen.

Optimierung von Tank-reinigungs-systemen

Das beste Verfahren zur gründlichen Reinigung Ihrer Tanks bei gleichzeitiger Reduzierung der Kosten für Chemikalien, Wasser und Personal zu finden kann eine große Herausforderung darstellen. Sie haben mehrere Möglichkeiten, die Leistung ihrer Tankreinigungssysteme zu maximieren. Mit den in diesem Katalog genannten Optimierungshinweisen möchten wir Ihnen helfen, eine optimale Reinigungsleistung zu erzielen.

Einige Fragen zu Beginn

Werden die Tanks derzeit manuell gereinigt?

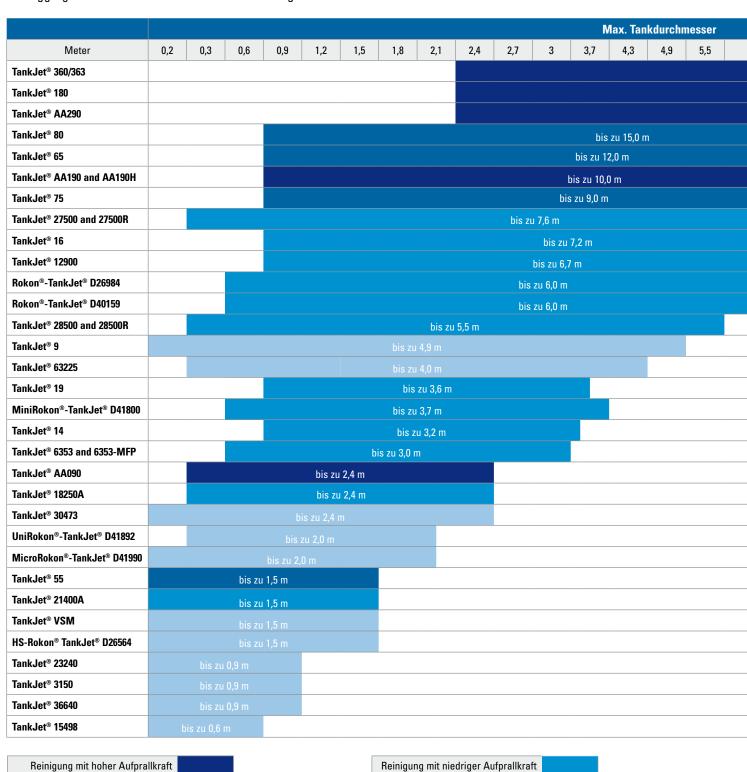
Eine automatisierte Systemlösung bietet zahlreiche Vorteile:

- Gründliche Reinigung, gleichbleibend gutes Reinigungsergebnis
- Erhöhte Arbeitssicherheit durch geringeren Kontakt mit gefährlichen Chemikalien
- Schnellere Reinigung minimale Stillstandszeiten und schnellere Verfügbarkeit der Tanks
- Reduzierung der Kosten für Wasser,
 Reinigungschemikalien und Abwassergebühren
- · Personal kann sich anderen Aufgaben zuwenden

Werden Tankreinigungsdüsen oder -aggregate eingesetzt?

Durch einige leichte Anpassungen oder den Einsatz anderer Reinigungssysteme können Sie ggf. die Reinigungsleistung erhöhen. Dank technischer Fortschritte können hartnäckige Rückstände leichter entfernt, Reinigungszykluszeiten verkürzt und höhere Automatisierungsgrade erzielt werden.

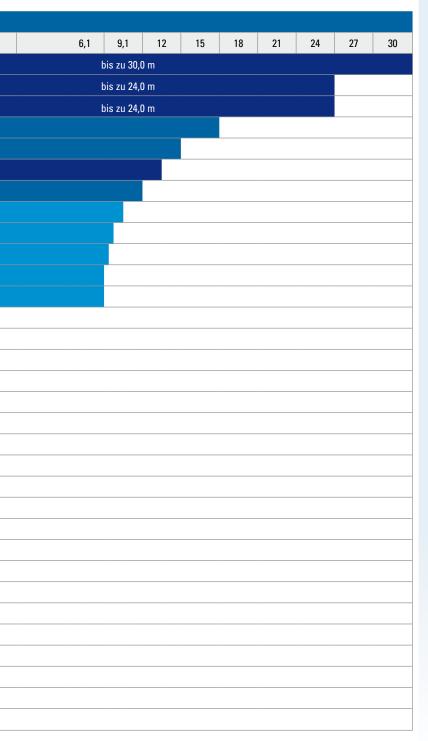
Der erste Schritt einer erfolgreichen Optimierung der Tankreinigung ist eine sorgfältige Verfahrensanalyse.


- Wie viele Tanks müssen gereinigt werden? Welche Tankdurchmesser, -längen und -höhen sind zu berücksichtigen?
- Befinden sich Einbauten wie Rühr- oder Mischwerke im Tank?
- Erfordern bestimmte Bereiche einen erhöhten Reinigungsaufwand, z. B. aufgrund von Schmutzrändern?
- Welche Rückstände müssen beseitigt werden?
 Sind sie stark anhaftend? Oder leicht abzureinigen?
- Sind Reinigungsmittel erforderlich oder genügt Wasser?
 Muss die Reinigungsflüssigkeit erhitzt werden?
- Welche Probleme treten beim derzeit eingesetzten Reinigungsverfahren auf?

Die Antworten auf diese Fragen erleichtern Ihnen anschließend die Analyse möglicher Lösungen.

Optimierung von Tankreinigungssystemen

Auswahl geeigneter Tankreinigungsaggregate


Die Grafik unten bietet eine Übersicht über unsere Tankreinigungsprodukte und für welche maximalen Tankdurchmesser sie geeignet sind. Der maximale Tankdurchmesser versteht sich hier als weiteste Entfernung, die der Reinigungsstrahl zur Tankwand zurücklegen kann, wenn das Reinigungsaggregat in der Mitte des Tanks positioniert ist. Je kürzer die Entfernung der Düse zur Tankwand, desto höher die Aufprallkraft. Die Grafik zeigt auch die empfohlenen Tankmindestdurchmesser. Einige Tankreiniger können natürlich auch in kleineren als den empfohlenen Tanks eingesetzt werden, hierbei sollten jedoch die Größe des Aggregats und die Volumenströme berücksichtigt werden.

Reinigung mit mittlerer Aufprallkraft

Spülen

Optimierung von Tankreinigungssystemen

Möglichkeiten im Vergleich

Ihre endgültige Entscheidung hängt dabei von der Tankgröße und dem zu erwartenden Reinigungsaufwand ab. In Ihrem Auswahlprozess sollten Sie auch folgende Punkte bedenken:

Reinigung mit hoher Aufprallkraft ist zum Entfernen hartnäckiger Rückstände wie angetrocknete Produktreste erforderlich. Tankreiniger dieser Kategorie arbeiten im Allgemeinen bei hohem Druck und/oder hohem Volumenstrom, jedoch bei niedriger Drehgeschwindigkeit, um eine hohe Aufprallkraft zu erzielen. Maximale Aufprallkraft wird durch Vollstrahldüsen gewährleistet.

Reinigung mit mittlerer Aufprallkraft wird eingesetzt, wenn eine gute Beschwallung zum Entfernen von Rückständen erforderlich ist. Tankreiniger mit mittlerer Aufprallkraft sind i. A. mit Vollstrahldüsen bestückt und arbeiten im mittleren Volumenstromund Druckbereich. Die Drehzahl ist geringfügig höher als bei Tankreinigern mit hoher Aufprallkraft, jedoch weitaus geringer als bei frei drehenden Reinigungsköpfen, um eine ausreichende Aufprallkraft in den zu reinigenden Bereichen zu gewährleisten.

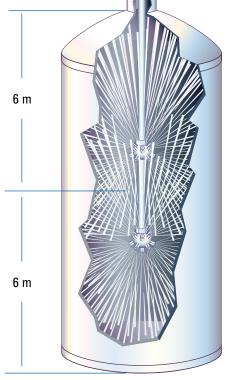
Reinigung mit niedriger Aufprallkraft

wird für leichte Reinigungsaufgaben eingesetzt, die jedoch eine gewisse Aufprallkraft benötigen. Dies wird durch Düsen erreicht, die mit geringem Volumenstrom bei hohem Druck arbeiten, oder durch Düsen mit hohen Volumenstrom bei geringem Druck. Hierzu gehören rotierende Flachstrahldüsen oder stationäre Vollkegeldüsen.

Spülen ist die geeignete Reinigungsmethode, wenn eine Verteilung der Reinigungslösung im Tank ohne Aufprallkraft eine ausreichende Reinigung gewährleistet. Als Düsen für Spülaufgaben werden z. B. frei drehende oder stationäre Sprühkugeln verwendet.

Sechs entscheidende Reinigungsparameter

Haben Sie einen geeigneten Tankaggregat- oder Düsentyp in die engere Wahl gezogen, empfehlen wir Ihnen, diese im folgenden Schritt auch unter den folgenden Aspekten zu prüfen. So stellen Sie sicher, dass die erwartete Reinigungsleistung auch tatsächlich erzielt wird. Hier einige Hinweise für die endgültige Modellauswahl.


Spritzabstand

Unter dem Spritzabstand, mitunter auch "Wurfweite" genannt, versteht man die Entfernung zwischen dem Strahl, der aus der Düsenöffnung austritt, und dem Punkt, an dem der Strahl auf die Zieloberfläche auftrifft. Der aus der Düse austretende Strahl muss natürlich die Wände des Tanks erreichen. Dies bedeutet jedoch nicht, dass der auf die Tankoberfläche treffende Strahl auch stark verschmutzte Bereiche reinigen kann. Der Strahl verliert an Kraft, je weiter er sich von der Düse entfernt. Die Düse muss mit ausreichendem Druck beaufschlagt werden, damit die Aufprallkraft der Reinigungsflüssigkeit ausreicht, um Rückstände zu entfernen.

Der Spritzabstand, und damit die notwendige Reichweite des Sprühstrahls, wird normalerweise durch den Tankdurchmesser bestimmt. Hat ein

Tank beispielsweise einen Durchmesser von 6 m und ist 12 m lang, können

entweder zwei Tankreiniger mit einer Reichweite von 6 m oder ein Tankreiniger mit einer Strahllänge von 12 m eingesetzt werden.

Aufprallkraft

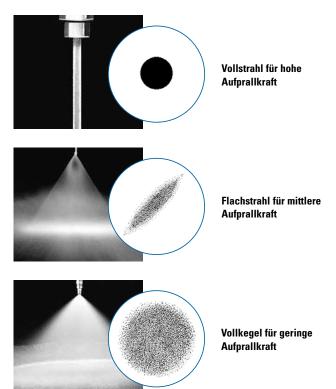
Die notwendige Aufprallkraft hängt von der Art der abzureinigenden Rückstände ab. Wir beraten Sie gerne. Auf Anfrage können wir Ihnen die Aufpralldaten für die gängigen Produkte nennen.

Die Aufprallkraft lässt sich durch Erhöhen des Volumenstroms und durch Erhöhen des Drucks verstärken. Eine Erhöhung des Volumenstroms ist jedoch wesentlich effektiver. Eine Verdoppelung des Volumenstroms erhöht die Reinigungskraft bis zu 100 %, während eine Verdopplung des Drucks nur zu einer 40 %igen Erhöhung führt. Die beste Reinigungswirkung lässt sich jedoch mit einem Tankreinigungsprodukt mit geeigneter Aufprallkraft erzielen.

Relative Aufprallkraft

Volumenstrom	Druck	Relative Aufprallkraft
50 l/min	3 bar (0,3 MPa)	1,0
50 l/min	6 bar (0,6 MPa)	1,4
100 l/min	3 bar (0,3 MPa)	2,0

Außerdem ist der Einfluss der Drehzahl auf die Aufprallkraft zu bedenken. Höhere Drehzahlen können die Aufprallkraft und damit die Leistung beeinträchtigen. Der Strahl dreht dann so schnell, dass sich die Energie verteilt und das Spritzbild verschlechtert, bevor der Strahl die Tankoberfläche erreicht. In einigen Anwendungsfällen ist es eventuell möglich, die Aufprallkraft so zu erhöhen, dass auf eine Reinigung mit heißem Wasser verzichtet werden kann. Dies hängt von der Art der Verunreinigung ab.

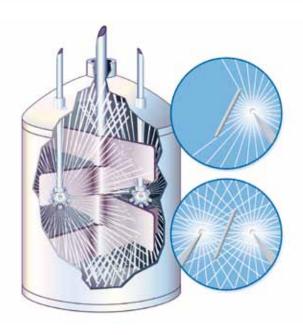

Kann die Temperatur der Reinigungslösung durch Erhöhen der Aufprallkraft gesenkt werden, bietet sich ein enormes Einsparpotential bei den Energiekosten.

Volumenstrom

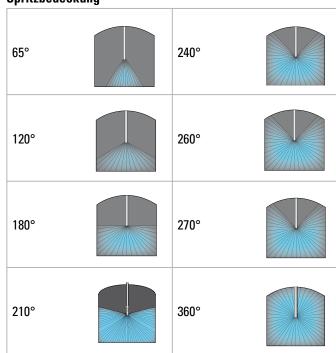
Arbeiten Sie mit dem niedrigsten Volumenstrom, mit dem Sie Ihre Reinigungsanforderungen noch erfüllen können. Bei einem geringeren Volumenstrom sinkt der Verbrauch an Reinigungsflüssigkeit und damit Abwasserbelastung und Energieverbrauch. Allgemeiner Richtwert: – Minimum: 7 l/min/m² – Optimum: 15 l/min/m². Dieser Richtwert bezieht sich im Allgemeinen auf fest montierte Düsen, die die gesamte Tankoberfläche gleichzeitig beschwallen. Der Strahl einer rotierenden Düse benetzt jeweils einen Teil der Tankoberfläche, wodurch sich der notwendige Volumenstrom verringert.

Spritzbild

Vollstrahldüsen haben die größte Reinigungskraft, gefolgt von Flachstrahl- oder Vollkegeldüsen.



Werkstoffe


Aufgrund der Langlebigkeit und Temperaturbeständigkeit sind die meisten Tankreinigungsdüsen aus rostfreiem Stahl gefertigt. Für Anwendungen, bei denen Korrosionsgefahr besteht, eignen sich Düsen aus PTFE oder PVDF. Achten Sie bei der Auswahl der Dichtungswerkstoffe darauf, dass diese beständig gegen die verwendete Reinigungslösung sind.

Spritzbedeckung

Die Spritzbedeckung der Tankreinigungsdüsen reicht von 65° bis 360°. Um alle Tankoberflächen zuverlässig zu reinigen, benötigen Sie ggf. mehrere Düsen, besonders wenn der Tank Einbauten in Form von Rührwerken enthält.

Spritzbedeckung

Weitere Optimierungshinweise

Verwenden Sie Filter, um die Tankreinigungsdüsen oder hydraulischen Tankaggregate vor Schmutzpartikeln zu schützen.

Feststoffe in der Flüssigkeit können Düsenverstopfungen und einen Stillstand des Düsenkopfs verursachen. Das Reinigungsergebnis wird beeinträchtigt. Eine Filterung der Flüssigkeit durch Leitungsfilter verhindert Verstopfungen und verlängert die Standzeit nachgeschalteter Anlagenteile.

- Als Feinfilter können gewobene Drahtgeflecht-Filter mit sehr kleinen Maschenweiten (bis 200, d.h. 74 μ) eingesetzt werden
- Drahtgeflechte aus rostfreiem Stahl bieten dabei eine hohe mechanische Festigkeit und Korrosionsbeständigkeit
- Der Filtereinsatz ist für den Betrieb des Filters entscheidend, daher empfehlen wir, immer einen Einsatz für jeden eingebauten Filter als Ersatzteil vorzuhalten

Empfehlungen zur Auswahl von Leitungsfiltern und Maschenweiten finden Sie in unserem Filter-Bulletin.

Gewährleisten Sie eine effektive Medienversorgung durch Düsenlanzen

Wird das Tankreinigungsaggregat nicht effizient mit Flüssigkeit versorgt oder die Düse nicht richtig im Tank positioniert, leidet die Reinigungsleistung.

- Prüfen Sie bei der Auswahl des Tankreinigungsaggregats oder der Düse auch, ob eine Düsenlanze erforderlich ist. Benötigen Sie eine Standardlanze oder eine kundenspezifische Sonderanfertigung? Eine kundenspezifische Düsenlanze bietet sich an, wenn die Düsen so positioniert werden sollen, dass der Strahl direkt auf stark verschmutzte Bereiche oder Schmutzränder wirkt, oder wenn Spezialanschlüsse, Sonderlängen oder -werkstoffe benötigt werden
- Die Zusammenarbeit mit nur einem Lieferanten gewährleistet aufeinander abgestimmte Komponenten und Anschlusskompatibilität

Nähere Informationen zu unseren Düsenlanzen finden Sie in unserem Bulletin.

Bessere Reinigung durch Änderung der Düsenkopfposition

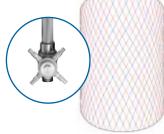
Kugelgelenkkörper ermöglichen die Tankreinigung in Abschnitten. Zuerst wird z.B. der obere Teil des Tanks gereinigt, dann der Reiniger abgesenkt, um den unteren Teil zu reinigen. Alternativ kann der Winkel verändert werden, um schwer zugängliche Stellen zu erreichen.

Reduzierung der Reinigungszyklen

Eine Reduzierung der für eine gründliche Reinigung erforderlichen Reinigungszyklen lässt sich häufig schon durch geringfügige Anpassungen bei Druck und Volumenstrom erreichen.

Einsparungen durch Wiederverwendung

Prüfen Sie, ob die Reinigungslösung mehrfach verwendet werden kann, wenn keine umweltgefährdenden Stoffe enthalten sind und das Wasser frei von Feststoffen ist.


Reinigungsbeginn per Knopfdruck

Ein fest installiertes Tankreinigungsaggregat kann Zeit und Personalkosten sparen. Ein Festeinbau ist möglich, wenn das Tankaggregat gegen das Medium im Tank und die Medientemperatur beständig ist.

Streifenbildung minimieren

Tankreinigungsaggregate mit Motor- bzw. Eigenantrieb gewährleisten eine 360° Spritzbedeckung. Allerdings findet bei Drehung des Düsenkopfes keine vollständige Überlappung der Vollstrahlen statt, sondern es bleibt ein geringfügiger Abstand zwischen den Strahlen. Dieser Abstand wird umso größer, je weiter die Düsen von der Tankwand entfernt sind. Es kommt zur sogenannten "Streifenbildung". Diese Streifenbildung lässt sich am besten durch den Einsatz von Düsenköpfen mit 3 oder 4 Düsen anstelle des Standardkopfs mit 2 Düsen verringern.

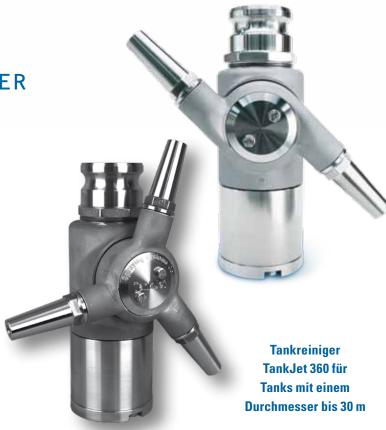
Streifenbildung bei Düsenkopf mit 2 Düsen

Streifenbildung bei Düsenkopf mit 4 Düsen

Schnellübersicht

Düse	Max. Tankdurch- messer (m)	Arbeits- prinzip	empfohlener Betriebsdruck bar (MPa)	Volumen- strombereich (I/min)	Spritz- bedeckung	Min. Behälteröffnung (mm)	Max. Temperatur °C	Seite
TankJe		Flüssigkeits- angetriebene Turbine	2,8 – 24 (0,28 – 2,4)	113 – 1135	360°	159 bei 2 Düsen 260 bei 3 Düsen	120	12
TankJe 700 & 7	t®	Flüssigkeits- angetriebene Turbine	2,8 – 24 (0,28 – 2,4)	113 – 1135	360°	700: 178 750: 260	120	14
TankJe 1	80	Flüssigkeits- angetriebene Turbine	2,8 – 24 (0,28 – 2,4)	113 – 1135	180° vom Anschluss weg; 180° zum Anschluss hin	311	120	16
Tank Je		Motorantrieb	3,5 – 17 (0,35 – 1,7)	85 – 757	360°	184 bei 2 Düsen 210 bei 4 Düsen	93	18
TankJe	t [®] 80	Flüssigkeits- angetriebene Turbine	4,1 – 10,3 (0,41 – 1,03)	189 – 473	360°	165 bei 2 Düsen; 317,5 bei 3 Düsen	120	22
TankJe	t [®] 12	Flüssigkeits- angetriebene Turbine	3,4 - 10,3 (0,34 - 1,03)	114 – 568	360°	190	121; 260, Hoch- temperatur- Ausführung	24
Tank Je	10	Motorantrieb	7 – 70 (0,7 – 7,0)	12 – 170	180° vom Anschluss weg; 360°	95 bei 360°; 115 bei 180°	93	26
TankJe	t [®] 9 75	Flüssigkeits- angetriebene Turbine	3,5 - 20,7 (0,35 - 2,07)	30 – 125	360°	76,2 bei 2 Düsen; 95,2 bei 4 Düsen	120	30
Tank Je 275		Hydraulisch — Eigenantrieb	0,7 – 3,5 (0,07 – 0,35)	15 – 1490	180° zum Anschluss/ vom Anschluss weg 270° zum Anschluss/ vom Anschluss weg 360°	51 – 178	93	32
TankJe	t [®] 7,2	Hydraulisch – Eigenantrieb	3,4 - 13,8 (0,34 - 1,38)	114 – 288	360° und 270° vom Anschluss weg 180° zum Anschluss/ vom Anschluss weg	78	120	34
Tank Je	6 /	Feststehend (stationär)	1,5 – 3,5 (0,15 – 0,35)	280 – 1470	360° und kunden-spezifische Spritzwinkel	254	100	36
Rokor TankJe D26984 D401	t® 6	Hydraulisch – Eigenantrieb	2 - 6 (0,2 - 0,6)	12 – 128	65° vom Anschluss weg, 120° vom Anschluss weg 180° zum Anschluss/ vom Anschluss weg 260° zum Anschluss/ vom Anschluss weg 360°	Gewinde: 56 CIP- Anschluss: 110	70	38
TankJe 28500 2850	& 55	Hydraulisch – Eigenantrieb	0,7 – 3,5 (0,07 – 0,35)	34 – 295	180° zum Anschluss/ vom Anschluss weg 270° zum Anschluss/ vom Anschluss weg, 360°	64 – 102	93	40
TankJet®	-A	Hydraulisch	07 03	4,9 – 18,9	2 x 175°	27		
ankjet 9	-B 4,9	– Eigenantrieb	0,7 - 8,3 (0,07 - 0,83)	18,9 – 64	360°	35	88	42
TankJe 632		Feststehend (stationär)	1 – 2,8 (0,1 – 0,28)	45 – 144 83 – 192	360° 180° vom Anschluss weg; 180° zum Anschluss hin; 360°	42 87 – 118	204	44

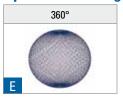
Schnellübersicht


Düse	Max. Tankdurch- messer (m)	Arbeits- prinzip	empfohlener Betriebsdruck bar (MPa)	Volumen- strombereich (I/min)	Spritz- bedeckung	Min. Behälteröffnung (mm)	Max. Temperatur °C	Seite
TankJet®	3,6	Flüssigkeits- angetriebene Turbine	3,4 - 13,8 (0,34 - 1,38)	38 – 114	360° 270° 180° zum Anschluss/ vom Anschluss weg	51	120	46
MiniRokon®- TankJet® D41800	3,7	Hydraulisch – Eigenantrieb	2 – 12 (0,2 – 1,2)	10,8 – 128	360°	Gewinde: 31 CIP-Anschluss: 50	150	48
TankJet®	3,2	Hydraulisch – Eigenantrieb	3,4 - 13,8 (0,34 - 1,38)	49 – 129	360° und 270° vom Anschluss weg, 180° zum Anschluss/ vom Anschluss weg	51	120	34
TankJet® 6353 & 6353-MFP	3	Feststehend (stationär)	1,5 – 3,5 (0,15 – 0,35)	35 – 301	360°	152	100	50
TankJet®		Motorantrieb	7 – 35 (0,7 – 3,5)	5,7 – 28	360°	59	93	52
TankJet® 18250A	2,4	Hydraulisch – Eigenantrieb	1 – 4 (0,1 – 0,4)	48 – 205	360°	60	177	54
TankJet® 30473		Hydraulisch – Eigenantrieb	0,7 - 4 (0,07 - 0,4)	7,8 – 18	180° zum Anschluss/ vom Anschluss weg, ~360°	25	93	56
UniRokon®- TankJet® D41892	20	Hydraulisch – Eigenantrieb	2 – 4 (0,2 – 0,4)	15,9 – 29	360°	Gewinde: 37 CIP-Anschluss: 50	70	57
MicroRokon®- TankJet® D41990	2,0	Hydraulisch – Eigenantrieb	1 – 4 (0,1 – 0,4)	9,4 – 27,5	180° zum Anschluss/ vom Anschluss weg, 360°	Gewinde: 20 CIP-Anschluss: 50	150	58
TankJet® 55		Hydraulisch – Eigenantrieb	13,8 - 69 (1,38 - 6,9)	11 – 30	360°	44,5	93	60
TankJet® 21400A	1,5	Hydraulisch – Eigenantrieb	1 – 4 (0,1 – 0,4)	23 – 82	360°	60	177	62
TankJet® VSM	1,5	Feststehend (stationär)	0,7 – 10 (0,07 – 1,0)	1,9 – 269	120° vom Anschluss weg; 240° vom Anschluss weg	32 bei 1/2" 48 bei 3/4"	100	64
HS Rokon TankJet® D26564		Hydraulisch – Eigenantrieb	1 – 2 (0,1 – 0,2)	9 – 13	180° zum Anschluss oder vom Anschluss weg	37	90	66
TankJet® 23240		Hydraulisch – Eigenantrieb	1,5 – 12 (0,15 – 1,2)	14 – 79	360°, seitlicher Sprühstrahl	26	177	68
TankJet® 3150	0,9	Feststehend (stationär)	1 – 10 (0,1 – 1,0)	23 – 91	210°, 360°	51	100	70
TankJet® 36640		Hydraulisch – Eigenantrieb	1 – 4 (0,1 – 0,4)	3,4 – 7,9	seitlicher Sprühstrahl	26	93	72
TankJet® 15498	0,6	Feststehend (stationär)	5 – 10 (0,5 – 1,0)	23 – 43	210°, 360°	51	100	74

HYDRAULISCH ANGETRIEBENER TANKREINIGER

Reinigung mit hoher Aufprallkraft für hartnäckige Rückstände, ausgezeichnete Reinigungsleistung

Konstruktionsmerkmale und Vorteile


- Gleichbleibende Aufprallkraft im gesamten Druckbereich; dadurch eine wirksamere Reinigung als mit vergleichbaren hydraulischen Tankreinigern
- Kürzere Reinigungszyklen durch hohe Aufprallkraft und somit erhöhte Behälterverfügbarkeit durch Verringerung wartungsbedingter Ausfallzeiten
- Düsen rotieren um 360° in der horizontalen und vertikalen Ebene und sorgen so für eine vollständige Benetzung der Tankoberfläche. Auch stark anhaftende Rückstände werden zuverlässig entfernt
- Mit lebensmitteltauglichem Getriebe mit Ölschmierung oder eigengeschmiert
- Rotationskopf ausgestattet mit zwei oder drei Düsen
- Ohne Motor die Tankreiniger TankJet 360 werden durch die Reinigungsflüssigkeit angetrieben
- Schlank und kompakt passt auch durch kleine Reinigungsöffnungen
- Wahlweise Anschluss über Kupplung (Standardausführung) oder CIP-Anschluss. Bei Ausführung mit Kupplung lässt sich der Rotationskopf leicht von Hand drehen zum einfachen Einbringen und Entnehmen aus dem Tank. Der CIP-Anschluss eignet sich für fest installierte Aggregate. Ausführungen mit CIP-Anschluss bzw. Kupplung sind mit zusätzlichen selbstreinigenden Düsen erhältlich
- Einfach zu transportieren dank leichter Bauweise
- Individuell für Ihre Anwendung konfigurierbar. Der TankJet 360 ist für die Umlaufreinigung mit hochkonzentrierten Chemikalien genauso geeignet wie für die Reinigung bei niedrigem Druck und hohem Volumenstrom. Alle Aggregate werden einzeln nach Kundenauftrag gefertigt
- Geringe Verstopfungsgefahr und lange Lebensdauer durch integrierten Filter
- Einfache Wartung durch den Anwender
- Für Volumenströme unter 113,5 I/min empfiehlt sich das Modell TankJet 363 mit patentierter Technologie für niedrige Volumenströme und geringere Abwasserkosten.

Nähere Informationen erhalten Sie bei unseren Verkaufsbüros

 Gutes Preis-/Leistungsverhältnis – höhere Leistung bei vergleichbarem Preis. Außerdem profitieren Sie vom anwendungsspezifischen Expertenwissen und vom technischen Support des Marktführers in der Sprühtechnik

Spritzbedeckung

- Mischern
- Behältern und Tanks in Brauereien
- Behältern und Tanks in der Nahrungsmittelindustrie
- Reaktionstanks in der Petrochemie / Chemie
- Behältern zur Faserlagerung
- Behältern in der verarbeitenden Industrie
- Tanklastzügen
- Bottichen in Weinkellereien

Spezifikationen

Max. Tank-30 m durchmesser:

Volumen-113 bis 1135 I/min strombereich:

empf. Druckbereich: 2,8 bis 24 bar (0,28 bis 2,4 MPa)

Reinigungs-10 bis 30 min zykluszeit:

Max. Betriebstemperatur:*

120 °C

Min. Behälter-Zwei Düsen: 159 mm öffnung: Drei Düsen: 260 mm

2" NPT (IG) mit 2-1/2"

Schnellwechselanschluss (AG)

2" NPT (IG) mit 2-1/2" NST (NH) Düsenanschluss:

Schlauchanschluss (AG)

2" BSPT (IG) mit 2-1/2" Schnellwechselanschluss (AG)

Gussteile - Messing oder rostfreier Stahl 316

Getriebe - rostfreier Stahl

0-Ringe - selbst-schmierend

EPDM oder Viton®

Werkstoffe: Dichtungen – federunterstützte

Hochleistungsdichtungen aus PTFE

Lagerung Getriebewelle -PTFE oder Oilite-Lager

Sonstige Metallteile - rostfreier

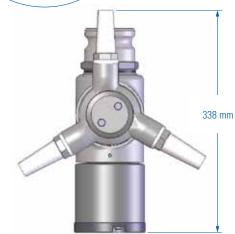
Stahl 316

Gewicht: 11,3 kg

Viton® ist ein eingetragenes Warenzeichen der Firma DuPont Performance Elastomers.

Ausführung mit zwei Düsen


MIN. BEHÄLTERÖFFNUNG 159 mm



Ausführung mit drei Düsen

MIN. BEHÄLTERÖFFNUNG 260 mm

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

TankJet® 700 & 750

ROTIERENDER HYDRAULISCHER TANKREINIGER

Reiniger mit hoher Aufprallkraft und ausgezeichneter Reinigungsleistung für die Marineindustrie

Konstruktionsmerkmale und Vorteile

- Gleichbleibende Aufprallkraft im gesamten Druckbereich; dadurch eine wirksamere Reinigung als mit vergleichbaren hydraulischen Tankreinigern
- Kürzere Reinigungszyklen durch hohe Aufprallkraft und somit erhöhte Behälterverfügbarkeit durch Verringerung wartungsbedingter Ausfallzeiten
- Modell 700 mit Spezial-Einlaufschaft und Sicherungsöse (2,54 cm) für eine kontrollierte Handhabung und erhöhte Sicherheit
- Modell 750 verfügt zusätzlich über ein Stoßfängersystem zum Schutz des Tankreinigers sowie der Tankwände und Auskleidungen vor Schäden beim Einsatz auf Schiffen
- Düsen rotieren um 360° in der horizontalen und vertikalen Ebene und sorgen so für eine vollständige Bedeckung der Tankoberfläche. Auch stark anhaftende Rückstände werden zuverlässig entfernt.
- Ölgeschmiertes Getriebe in lebensmittelgerechter Ausführung
- Rotationskopf mit 2 Düsen, acht Düsengrößen sind lieferbar
- Wahlweise Anschluss über Kupplung (Standardausführung) oder CIP-Anschluss. Ausführung mit zusätzlichen selbstreinigenden Düsen erhältlich
- Individuell für Ihre Anwendung konfigurierbar. Der TankJet 700 & 750 ist für die Umlaufreinigung mit hochkonzentrierten Chemikalien ebenso geeignet wie für die Reinigung bei niedrigem Druck und hohem Volumenstrom. Alle Aggregate werden einzeln nach Kundenauftrag gefertigt
- Geringe Verstopfungsgefahr und lange Lebensdauer durch integrierten Leitungsfilter
- Einfache Wartung durch den Anwender

Tankreiniger TankJet 750 für Tanks mit einem Durchmesser bis 30 m

Spritzbedeckung

- · Chemikalien-, Massengut- und Produktfrachtern
- Offshore-Schiffen/Versorgern
- Ölfrachtern
- OBO-Frachtern (Öl, Massengut, Erz)
- Tankschiffen zur Produktion,
 Lagerung und Entladung von Rohöl (FPSO)
- Tankschiffen zur Lagerung und Entladung von Rohöl (FSO)

Spezifikationen Max. Tank-30 m durchmesser: Volumen-113 bis 1135 I/min strombereich: empf. Druckbereich: 2,8 bis 24 bar (0,28 bis 2,4 MPa) Reinigungs-10 bis 30 min zykluszeit: Max. Betriebs-120 °C temperatur:* Min. Behälter-700: 178 mm öffnung: 750: 260 mm 2" NPT (IG) mit 2-1/2" NST (NH) Schlauchanschluss (AG) Düsenanschluss: 2" BSPT (IG) mit 2-1/2" NST (NH) Schlauchanschluss (AG) Gussteile - rostfr. Stahl 316 Getriebe – rostfr. Stahl 17-4ph 0-Ringe - selbstschmierend, EPDM oder Viton® Dichtungen – federunterstützte Werkstoffe: Hochleistungsdichtungen aus PTFE Lagerung Getriebewelle -PTFE oder Oilite-Lager Stoßdämpfer - Viton Sonstige Metallteile rostfreier Stahl 316 700: 12,7 kg **Gewicht:** 750: 14,1 kg 700: 35 cm Höhe: 750: 36 cm

Viton® ist ein eingetragenes Warenzeichen der Firma DuPont Performance Elastomers.

Tankreiniger für den Marinebereich Modell 750 mit Stoßfängersystem schützt Düsenkopf,
Düsen und Getriebe

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

HYDRAULISCH ANGETRIEBENER TANKREINIGER

Zielgerichtete Sprühstrahlen mit hoher Aufprallkraft zum Entfernen hartnäckiger Rückstände

Konstruktionsmerkmale und Vorteile

- Gleichbleibende Aufprallkraft im gesamten Druckbereich; dadurch eine wirksamere Reinigung als mit vergleichbaren hydraulischen Tankreinigern
- Kürzere Reinigungszyklen durch hohe Aufprallkraft und somit erhöhte Behälterverfügbarkeit durch Verringerung wartungsbedingter Ausfallzeiten
- Erzeugt einen gebündelten Reinigungsstrahl, der hartnäckige Ablagerungen und Rückstände vom Boden und schwer erreichbaren Bereichen des Tanks entfernt.
- Gute geeignet f
 ür offene Tanks
- Düsen rotieren in mehreren Ebenen und sorgen so für eine vollständige Benetzung und gründliche Reinigung der Tankoberfläche. Auch stark anhaftende Rückstände werden entfernt
- Mit lebensmitteltauglichem Getriebe mit Ölschmierung oder eigengeschmiert
- Ohne Motor die Tankreiniger TankJet 180 werden durch die Reinigungsflüssigkeit angetrieben
- Einfach zu transportieren dank leichter Bauweise
- Individuell für Ihre Anwendung konfigurierbar. Der TankJet 180 ist für die Umlaufreinigung mit hochkonzentrierten Chemikalien genauso geeignet wie für die Reinigung bei niedrigem Druck und hohem Volumenstrom. Alle Aggregate werden einzeln nach Kundenauftrag gefertigt
- Der TankJet 180 verfügt über einen integrierten Filter, dadurch geringe Verstopfungsgefahr und lange Lebensdauer

Spritzbedeckung

- Klebstofftanks
- Behältern und Tanks in der Nahrungsmittelindustrie
- Lacktanks
- Reaktionstanks in der Petrochemie/Chemie
- Behältern in der verarbeitenden Industrie
- Schlammbecken/Abwassertanks

Spezifikationen	
Max. Tank- durchmesser:	24 m
Volumen- strombereich:	113 bis 1135 l/min
empf. Druckbereich:	2,8 bis 24 bar (0,28 bis 2,4 MPa)
Reinigungs- zykluszeit:	10 bis 30 min
Max. Betriebs- temperatur:*	120 °C
Min. Behälter- öffnung:	311 mm
	2" NPT (IG) mit 2-1/2" Schnellwechselanschluss (AG)
Düsenanschluss:	2" NPT (IG) mit 2-1/2" NST (NH) Schlauchanschluss (AG)
	2" BSPT (IG) mit 2-1/2" Schnellwechselanschluss (AG)
	Gussteile – Messing oder rostfreier Stahl 316
	Getriebe – rostfreier Stahl
	O-Ringe – selbst-schmierend EPDM oder Viton®
Werkstoffe:	Dichtungen – federunterstützte Hochleistungsdichtungen aus PTFE
	Lagerung Getriebewelle – PTFE oder Oilite-Lager
	Sonstige Metallteile – rostfreier Stahl 316
Höhe:	31 cm
Breite einschl. Düsengehäuse:	30,8 cm
Gewicht:	13,2 kg

Viton® ist ein eingetragenes Warenzeichen der Firma DuPont Performance Elastomers.

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

TankJet® AA290

TANKREINIGER MIT MOTORANTRIEB

Effiziente Reinigung mit hoher Aufprallkraft. Langlebig und robust.

Konstruktionsmerkmale und Vorteile

- Zuverlässige, langlebige Aggregate mit Motorantrieb für eine hohe Reinigungsleistung. Entfernen auch hartnäckige Rückstände
- Speziell f
 ür Ihre Reinigungsaufgaben konfigurierbar.
 - Tankreiniger mit Druckluftmotor [CE-Kennzeichnung (AG)]
 - Rotationskopf mit zwei oder vier Düsen
 - Schaftlänge 0,9/1,2/1,8 m
- Änderung des Volumenstroms über Düsenauswahl oder Anpassung des Eingangsdrucks
- Die Antriebsmotoren befinden sich außerhalb des Tanks, abseits von schädlichen Reinigungslösungen. Dies erhöht die Lebensdauer und verringert das Ausfallrisiko
- Lange Lebensdauer durch korrosionsbeständigen rostfreien Stahl 316 und Dichtungen aus PTFE
- Optimale Reinigungswirkung durch Vollstrahldüsen der Reihe 55430: mit Strömungsstabilisatoren, die zur Wartung entnommen werden können

Spritzbedeckung

- Gär- und Hefetanks
- Mehlsilos
- Mischtanks
- Lacktanks

Spezifikationen	
Spezilikationen	
Max. Tank- durchmesser:	24 m
Volumen- strombereich:	85 bis 757 l/min
empf. Druckbereich:	3,5 bis 17 bar (0,35 bis 1,7 MPa)
Max. Betriebs- temperatur:*	93 °C
Min. Behälter- öffnung:	184 mm für Rotationskopf mit zwei Düsen, 210 mm für Rotationskopf mit vier Düsen
Spritzbedeckung:	360°
Düsenanschluss:	2" NPT oder BSPT (IG)
Flansche:	203 mm Flansch für Rotationskopf mit zwei Düsen
i iansone.	254 mm für Rotationskopf mit vier Düsen

Druckluftmotor

0,9/1,2/1,8 m

Technische Daten

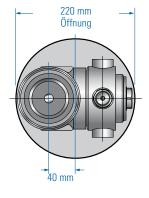
Motor:

Schaftlängen:

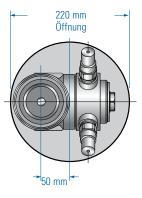
Gesamtvolumenstrom für 2 Düsen gleicher Leistung (I/min) bei Flüssigkeitsdruck* Doppelter Volumenstrom bei Einsatz von 4 Düsen bis 752 I/min						
Düsennr.	3,5 bar (0,35 MPa)	7 bar (0,7 MPa)	10 bar (1,0 MPa)	15 bar (1,5 MPa)	17 bar (1,72 MPa)	
55430-H3/4U-00100	85	121	144	177	188	
55430-H3/4U-00200	171	241	288	353	376	
55430-H3/4U-00250	213	301	360	441	470	
55430-H3/4U-00350	298	422	505	618	658	
55430-H3/4U-00400	341	482	577	706	752	

^{*}Hinweis: Flüssigkeitsdruck in der Nähe des Tankreinigeranschlusses gemessen.

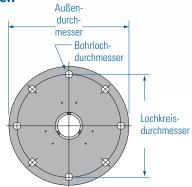
^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

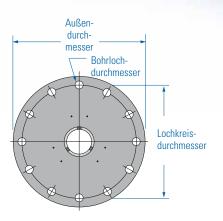

Reinigungszyklus – Druckluftmotor (AG)

Luftdruck	Luftverbrauch		Richtwert) min)	Zeitbedarf (Richtwert) pro Reinigungszyklus (min.)		
(bar/MPa)	(I/sec)	3,4 bar (0,34 MPa)	17,2 bar (1,72 MPa)	3,4 bar (0,34 MPa)	17,2 bar (1,72 MPa)	
0,8 (0,08)	2,2	6	2	11	32	
1,0 (0,10)	2,5	8	4	7	17	
1,1 (0,11)	3,0	10	8	6	8	
1,2 (0,12)	3,4	_	9	_	7	


Maße und Gewichte - Druckluftmotor (AG)

Modell Nr.	Schaftlänge	Gesamtlänge	Gewicht mit Flansch 8"	Gewicht mit Flansch 10"
AAB290AG_F3	0,9 m	1,5 m	25,5 kg	28,7 kg
AAB290AG_F4	1,2 m	1,8 m	27,3 kg	30,5 kg
AAB290AG_F6	1,8 m	2,5 m	34,4 kg	34,6 kg


Maße kleinster notwendiger Ø für Rotationskopf mit 2 Düsen



Maße kleinster notwendiger Ø für Rotationskopf mit 4 Düsen

Flanschdaten

Flansch 8"

Flansch 10"

Flanschgröße	Flansch-Außen- durchmesser (mm)	Lochkreis- durchmesser (mm)	Anzahl Flansch- bohrungen	Bohrloch- durchmesser (mm)	Dicke (mm)
Flansch 8"	343	298,5	8	22,2	9,5
Flansch 10"	406	362,0	12	25,4	9,5

Bestellhinweise

Für BSPT-Gewinde "B" in die Bestellnummer einfügen.

ROTIERENDER HYDRAULISCHER TANKREINIGER

Effiziente, zuverlässige Reinigung von Tanks mit einem Durchmesser bis 15 m

Konstruktionsmerkmale und Vorteile

- Ideal für die Reinigung von großen Behältern, Tankwagen und Gärtanks bei minimalen Wartungskosten
- In mehreren Ebenen rotierende Vollstrahldüsen gewährleisten eine vollständige Benetzung (360°) des gesamten Tanks nach jeweils 45 Umdrehungen
- Der Antrieb erfolgt über die Reinigungsflüssigkeit, die über ein außenliegendes Getriebe die Düse antreibt. Ausreichende Einwirkzeit des Reinigungsmediums auf der Tankoberfläche und somit bessere Reinigungswirkung durch langsame Drehgeschwindigkeit des Reinigungskopfes
- Einfache Wartung durch einfache Bauweise
- Kann fest installiert oder mobil für mehrere Tanks eingesetzt werden
- Erhältlich mit Reinigungskopf mit 2 oder 3 Düsen
- Leicht wiegt nur 6,8 kg
- · Selbstreinigend
- Optional mit zusätzlicher CIP-Düse zum Abspülen von Düsenrohr und Düsenkopf

Spritzbedeckung

Hervorragend geeignet zur Reinigung von:

- Behältern und Tanks in Brauereien
- Behältern in der chemischen Industrie
- Gärtanks
- Tanks in der Nahrungsmittel- und Molkerei-Industrie
- Tanklastzügen

Spezifikationen

Ausführung mit 2 Düsen:

Volumen- 189 bis 360 l/min

strombereich: Ausführung mit 3 Düsen:

227 bis 473 l/min

empf. Druckbereich: 4 bis 10 bar (0,4 bis 1,0 MPa)

Max. Betriebstemperatur:*

120 °C

Drehzahl: 3 bis 20 U/min

Min. Behälter- Ausführung mit 2 Düsen: 165,1 mm

öffnung: Ausführung mit 3 Düsen: 317,5 mm

Spritzbedeckung: 360°

Düsenanschluss: 1-1/2" NPT oder BSPT (IG)

Gewicht: 6,8 kg

Werkstoffe: 316SS, PTFE, UHMW-PE

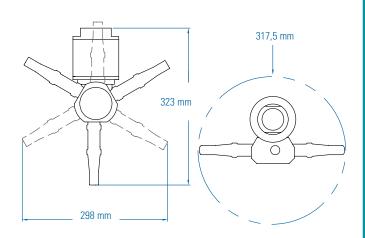
Zwei:

Düsenöffnung 9,5 mm oder 11,1 mm **Düsen:**

. D


Düsenöffnung 7,8 mm oder 9,5 mm

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit


Leistungsdaten

		Volumenstrom (I/min)								
Düsen-Nr.	4,1 bar (0,41 MPa)	4,8 bar (0,48 MPa)	5,5 bar (0,55 MPa)	6,2 bar (0,62 MPa)	6,9 bar (0,69 MPa)	7,6 bar (0,76 MPa)	8,3 bar (0,83 MPa)	9,0 bar (0,9 MPa)	9,7 bar (0,97 MPa)	10,3 bar (1,03 MPa)
TJ80-2-375	189	216	235	246	257	276	288	299	314	326
TJ80-2-375CIP	103	210	200	240	237	270	200	233	314	320
TJ80-2-438										
TJ80-2-438CIP	238	254	273	284	299	314	322	333	348	360
TJ80-2-438SR										
TJ80-3-313	227	238	246	257	276	288	295	310	322	333
TJ80-3-313CIP	221	230	240	237	2/0	200	290	310	322	ააა
TJ80-3-375										
TJ80-3-375SR	356	367	379	390	405	420	431	447	458	473
TJ80-3-375SRCIP										

Maße

TankJet 80-3

Bestellhinweise

Tankreiniger TankJet 80							
TJ80	B*	_	2	_	375	SR	CIP
I	1		1		1	1	1
Modell- Nr.	An- schluss- typ		Modell- Typ		Düsen- öffnung	Langsam drehend	CIP- Reinigung

^{*} Kürzel "B" einfügen, wenn BSPT-Anschluss gewünscht wird. Für NPT-Anschluss frei lassen.

ROTIERENDER HYDRAULISCHER TANKREINIGER

Gründliche, effiziente und zuverlässige Reinigung

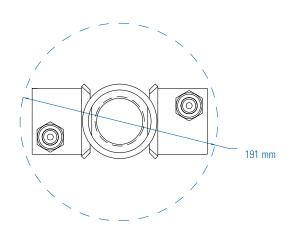
Konstruktionsmerkmale und Vorteile

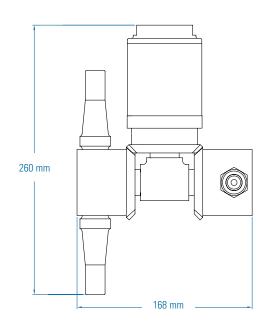
- In mehreren Ebenen rotierende Vollstrahldüsen gewährleisten eine vollständige Benetzung (360°) des gesamten Tanks nach jeweils 45 Umdrehungen
- Rotationskopf mit 4 Düsen für ein engmaschiges Spritzbild und schnelle Reinigungszyklen
- Ausführung vollständig aus rostfreiem Stahl für Hochtemperatur-Anwendungen bis 260 °C
- Der Antrieb erfolgt über die Reinigungsflüssigkeit, die über ein außenliegendes Getriebe die Düse antreibt. Ausreichende Einwirkzeit des Reinigungsmediums auf der Tankoberfläche durch langsame Drehgeschwindigkeit des Rotationskopfes
- Selbstreinigend
- Wartungsfreundlich kein innen liegendes Reduziergetriebe
- Kann fest installiert oder mobil für mehrere Tanks eingesetzt werden
- Leicht wiegt nur 5,3 kg

Spritzbedeckung

- Braukesseln
- Behältern in der chemischen Industrie
- Behältern in Molkereien
- Behältern in der Nahrungsmittelindustrie
- Sprühtrocknern
- Tanklastzügen

Tankreiniger TankJet 65 für Behälterdurchmesser bis 12 m


Spezifikationen					
Max. Tankdurchmesser:	12 m				
Volumen- strombereich:	Standardausführung: 114 bis 379 l/min Hochtemperatur-Ausführung: 246 bis 568 l/min				
empf. Druckbereich:	3,4 bis 10,3 bar (0,34 bis 1,03 MPa)				
Drehzahlbereich:	5 bis 40 U/min				
Max. Betriebs- temperatur:*	Standardausführung: 121°C Hochtemperatur-Ausführung: 260°C				
Min. Behälter- öffnung:	191 mm				
Spritzbedeckung:	360°				
Düsenanschluss:	1-1/2" NPT oder BSPT (IG)				
Werkstoffe:	Standardausführung: rostfreier Stahl, PTFE, UHMW-PE, Nylon				
vveikslulie.	Hochtemperatur-Ausführung: komplett aus rostfreiem Stahl				
Düsen:	Vier: 6,4 mm, 7,9 mm oder 9,5 mm				


^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

Leistungsdaten

	Volumenstrom (I/min)						
Modell Nr.	3,4 bar (0,34 MPa)	4,8 bar (0,48 MPa)	6,2 bar (0,62 MPa)	6,9 bar (0,69 MPa)	7,6 bar (0,76 MPa)	9,0 bar (0,90 MPa)	10,3 bar (1,03 MPa)
TJ65-250	114	148	170	185	201	220	238
TJ65-313	193	227	265	280	299	322	348
TJ65-375	220	261	295	314	333	356	379
TJ65-250-HT	246	295	341	363	379	413	439
TJ65-313-HT	254	314	367	390	405	443	477
TJ65-375-HT	326	397	450	473	492	541	568

Maße

Bestellhinweise

	Tankreini	iger Tank <mark>J</mark> et	65	
TJ65	B* -	- 375	_	HT
I	1	1		1
Modell- Nr.	An- schluss- typ	Düsen- öffnung		Für hohe Temperaturen

^{*} Kürzel "B" einfügen, wenn BSPT-Anschluss gewünscht wird. Für NPT-Anschluss frei lassen.

TankJet® AA190

TANKREINIGER MIT MOTORANTRIEB

Aggregate mit Motorantrieb für eine schnelle, gründliche Reinigung und einen störungsfreien Betrieb

Konstruktionsmerkmale und Vorteile

- Vielfältig einsetzbarer Tankreiniger mit hoher Aufprallkraft für effiziente, zuverlässige Reinigung, praktisch wartungsfrei
- Eine Vielzahl von Optionen ermöglicht eine individuelle Anpassung an Ihre Reinigungsaufgabe. Zur Auswahl stehen:
 - Drehzahlgeregelter Druckluftmotor [CE-Kennzeichnung (AG)], Elektromotor (E)
 - Standardausführungen für Betriebsdrücke bis max. 35 bar (3,5 MPa)
 - Hochdruck-Ausführungen für Betriebsdrücke bis max. 70 bar (7,0 MPa) und höhere Aufprallkraft
 - Spritzbedeckung 360° bzw. 180°
 - Schaftlänge 0,9/1,2/1,8 m
- Montageflanscharten: Standard-Klemmflansch, Festflansch oder Tri-Clamp-Flansch für Hygieneanwendungen
- Motor befindet sich außerhalb des Tanks, daher kein Kontakt mit Reinigungsmedium und Tankinhalt
- Geringes Gewicht kann fest installiert oder für mobile Reinigungsaufgaben eingesetzt werden
- Lange Lebensdauer durch korrosionsbeständigen rostfreien Stahl 316 und Dichtungen aus PTFE

Spritzbedeckung

Hervorragend geeignet zur Reinigung von:

- Chemischen Reaktionstanks
- Lacktanks
- **Prozesstanks**
- Tanklastzügen

Tankreiniger TankJet AA190 für Behälterdurchmesser bis 10 m

Druckluft Wartungseinheit. Eine regelmäßige Schmierung der Druckluftleitung trägt wesentlich zur Verlängerung der Lebensdauer des Motors

Spezifikationen

Max. 7 m bei Standardausführung; Tankdurchmesser: 10 m bei Hochdruckausführung

12 bis 170 l/min

bei Standardausführung; Volumen-

strombereich: 26 bis 78 I/min

bei Hochdruckausführung

7 bis 35 bar (0,7 bis 3,5 MPa) bei Standardausführung; Druckbereich: Hochdruckausführung

bis 70 bar (7,0 MPa)

Max. Betriebs-93 °C temperatur:*

empf.

95 mm bei Aggregaten mit 360° Min. Behälter-Spritzbedeckung; 115 mm bei öffnung:

Aggregaten mit 180° Spritzbedeckung

Spritzbedeckung: 360° bzw. 180°

Motor: Druckluftmotor, Elektromotor

Schaftlängen: 0,9/1,2/1,8 m

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

10 m Tankdurchmesser bis 10 m

Leistungsdaten - Tankreiniger AA190

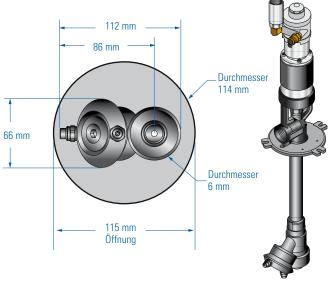
	Gesamtvolumenstrom für 2 Düsen gleicher Leistung (I/min) bei Flüssigkeitsdruck*						
Düsen-Nr.	7 bar (0,7 MPa)	15 bar (1,5 MPa)	20 bar (2,0 MPa)	30 bar (3,0 MPa)	35 bar (3,5 MPa)	50 bar (5,0 MPa)**	70 bar (7,0 MPa)**
1/4MEG-0010	11,8	17,3	20	24	26	32	38
1/4MEG-0015	17,9	26	30	37	40	48	57
1/4MEG-0020	24	35	40	49	53	63	75
1/4MEG-0025	29	43	50	61	66	78	_
1/4MEG-0030	35	51	59	72	78	_	_
1/4MEG-0035	40	59	68	83	90	_	_
1/4MEG-0040	45	66	76	93	101	_	_
1/4MEG-0050	54	79	92	112	121	_	_
1/4MEG-0060	63	92	102	129	140	_	_
1/4MEG-0070	70	102	118	144	156	_	_
1/4MEG-0080	76	111	128	157	170	_	_

^{*} Hinweis: Bei den oben aufgeführten Volumenströmen sind Druckverluste durch das Aggregat berücksichtigt.

Reinigungszyklus – Druckluftmotor* (AG, DAG)


Luft- druck	Luftver- brauch	Drehzahl (Richtwert) (U/min)		Zeitbedarf (Richtwert) pro Motortyp	
[bar (MPa)]	(MPa)] (I/sec)			3,5 bar (0,35 MPa)	34,5 bar (3,45 MPa)
0,41 (0,041)	105,8	4	1	8,8	35
0,55 (0,055)	133,6	7	7	5,0	8,8
0,69 (0,069)	65,3	10	8	3,5	4,4

^{*}Für Standard- und Hochdruckausführungen


Reinigungszyklus – Elektromotor (E)

Motor Type	Spannung Frequenz	Dreh- zahl (U/min)	Strom (A)	Leis- tung (W)	Zeitbedarf (Richtwert) pro Reinigungs- zyklus (min.)
Elektro-	230 V AC 50 Hz.	3,1	0,39	41	44
motor	110 V AC 60 Hz.	3,8	0,33	34	9

Maße Einlassöffnung für Rotationskopf mit 2 Düsen AA190

Maße Einlassöffnung für Rotationskopf mit 2 Düsen AA190D

^{**} Nur Hochdruckausführung. Wenn Sie zusätzliche Leistungsdaten zu Hochdruckaggregaten wünschen, wenden Sie sich bitte direkt an unsere Verkaufsbüros.

Standard-Klemmflansch

Bestellhinweise

Tankreiniger AA190 mit Standard- Klemmflansch					
Tankreinig	er —		Düse	nnr.——	
AA190DAGH -	3	+ 1/4	MEG	- 0010	
Tankreiniger-	Schaft-	An-	Düsen-	Leis-	
typ	länge	schluss	typ	tungs- größe	

Maße und Gewichte

Modell Nr.	Schaft- länge	Gesamt- länge	Gewicht
A A 100 A C	0,9 m	1,4 m	6,4 kg
AA190AG, AA190AGH*	1,2 m	1,7 m	7,0 kg
AATSOAGT	1,8 m	2,3 m	8,4 kg
A A 100D A O	0,9 m	1,4 m	6,4 kg
AA190DAG, AA190DAGH*	1,2 m	1,7 m	7,0 kg
AATSODAGT	1,8 m	2,3 m	8,4 kg
	0,9 m	1,2 m	6,4 kg
AA190E	1,2 m	1,5 m	7,0 kg
	1,8 m	2,1 m	8,4 kg

^{*}H kennzeichnet die Hochdruckausführung.

Bestellhinweise

Tankreiniger AA190 mit Festflansch					
Tanl	kreiniger -			Düser	nr.—
AA190AG	3F -	3	+ 1/4	MEG	- 0010
Tankreiniger- typ	Flansch- größe	Schaft- länge	An- schluss	Düsen- typ	Leis- tungs- größe

Maße und Gewichte

Modell Nr.	Schaft- länge	Gesamt- länge	Gewicht
	0,9 m	1,4 m	11,1 kg
AA190AG3F	1,2 m	1,7 m	11,8 kg
	1,8 m	2,3 m	13,2 kg
	0,9 m	1,2 m	11,1 kg
AA190E3F	1,2 m	1,5 m	11,8 kg
	1,8 m	2,1 m	13,2 kg
	0,9 m	1,3 m	13,4 kg
AA190AG4F	1,2 m	1,6 m	14,1 kg
	1,8 m	2,2 m	15,4 kg
	0,9 m	1,4 m	13,4 kg
AA190E4F	1,2 m	1,7 m	14,1 kg
	1,8 m	2,3 m	15,4 kg

Informationen über Einstellflansche, Montagesätze und Adapter für Tankreiniger finden Sie im Register "Zubehör".

Bestellhinweise

Tankreiniger AA190 mit Tri-Clamp-Flansch für Hygieneanwendungen					
Tankr	einiger -			Düsenn	r. —
1	3SF — I Tri-Clamp- Flansch	3 + I Schaft- länge	1/4 I An- schluss	l Düsen-	- 0010 I Leis- tungs- größe

Hinweis: Beim Tri-Clamp-Flansch 3" wurde der Rotationskopf so modifiziert, dass er bei vertikaler Ausrichtung der Düsen durch eine Öffnung von 70 mm passt.

Werden BSPT-Anschlüsse gewünscht, Kürzel "B" nach AA im Tankreinigertyp und vor dem Düsentyp einfügen.

Maße und Gewichte

Modell Nr.	Schaft- länge	Gesamt- länge	Gewicht		
	0,9 m	1,4 m	6,4 kg		
AA190AG3SF	1,2 m	1,7 m	7,0 kg		
	1,8 m	2,3 m	8,4 kg		
	0,9 m	1,2 m	6,4 kg		
AA190E3SF	1,2 m	1,5 m	7,0 kg		
	1,8 m	2,1 m	8,4 kg		
	0,9 m	1,4 m	6,4 kg		
AA190AG4SF	1,2 m	1,7 m	7,0 kg		
	1,8 m	2,3 m	8,5 kg		
	0,9 m	1,2 m	6,5 kg		
AA190E4SF	1,2 m	1,5 m	7,0 kg		
	1,8 m	2,1 m	8,5 kg		
	0,9 m	1,4 m	7,7 kg		
AA190AG6SF	1,2 m	1,7 m	8,4 kg		
	1,8 m	2,3 m	9,8 kg		
	0,9 m	1,2 m	7,7 kg		
AA190E6SF	1,2 m	1,5 m	8,4 kg		
	1,8 m	2,1 m	9,8 kg		

Informationen über Einstellflansche, Montagesätze und Adapter für Tankreiniger finden Sie im Register "Zubehör".

ROTIERENDER HYDRAULISCHER TANKREINIGER

Gründliche, kostengünstige Reinigung von Tanks und Behältern bis 9,1 m Durchmesser

Konstruktionsmerkmale und Vorteile

- Gut geeignet für die Reinigung bei mittlerer Aufprallkraft sowie die ausreichende Beschwallung kleiner Tanks ohne kostenintensivere Tankreiniger für große Aufprallkräfte
- Antrieb durch Reinigungsflüssigkeit mit außen liegenden Getrieben zur Reduzierung der Düsengeschwindigkeit für eine stärkere Aufprallkraft und höhere Reinigungswirkung
- Vollständige Benetzung der Tankoberfläche nach jeweils 45 Umdrehungen
- Vollstrahldüsen rotieren in unterschiedlichen Ebenen für eine vollständige Bedeckung der gesamten Tankoberfläche
- Einfache, wartungsfreundliche Bauweise –
 lässt sich einfach in ca. 5 Minuten zusammenbauen
- Kann fest installiert oder mobil für mehrere Tanks eingesetzt werden
- Selbstreinigend
- Langlebige Werkstoffe rostfreier Stahl 316, PTFE, UHMWE-PE

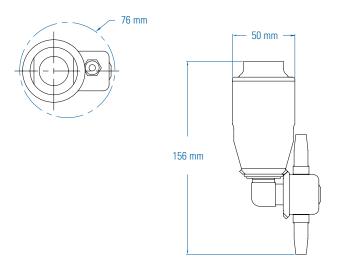
Zwei Ausführungen stehen zur Auswahl:

- TankJet 75-1858:
 - Rotationskopf mit 2 Düsen
 - 2 Düsengrößen verfügbar
 - Passt durch eine Einlassöffnung von 76,2 mm
- TankJet 75-1861:
 - Bauweise mit 4 Düsen für bessere Spritzbedeckung und schnellere Reinigung
 - 2 Düsengrößen verfügbar
 - Passt durch eine Einlassöffnung von 95,2 mm

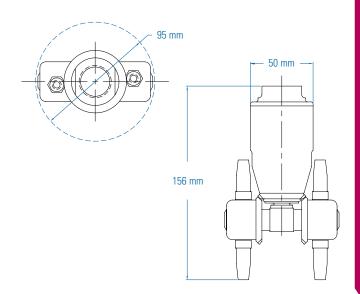
- Chemikalienbehältern
- Behältern und Bottichen in Molkereien
- Tanks in der Nahrungsmittel- und Getränke-Industrie
- Behältern in der pharmazeutischen Industrie
- Prozesstanks

Spezifikationen					
Modell-Nr.	75-1858	75-1861			
Volumen- strombereich:	42 bis 102 l/min	30 bis 125 l/min			
empf.Druckbereich:	5,2 bis 20,7 bar (0,52 bis 2,07 MPa)	3,5 bis 20,7 bar (0,35 bis 2,07 MPa)			
Drehzahlbereiche:	10 bis 18 U/min	7 bis 17 U/min			
Max. Betriebs- temperatur:*	121 °C	121 °C			
Min. Behälter- öffnung:	76 mm	95 mm			
Spritzbedeckung:	360°	360°			
Düsenanschluss:	3/4" NPT, BSPT (IG)	3/4" NPT, BSPT (IG)			
Düsen:	Zwei: Düsen- öffnung 6 mm oder 4 mm	Vier: Düsen- öffnung 4 mm oder 3 mm			
Gewicht:	0,9 kg	1,4 kg			

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit



Leistungsdaten


			V	in)			
Modell Nr.	3,4 bar (0,34 MPa)	5,2 bar (0,52 MPa)	6,9 bar (0,69 MPa)	10,3 bar (1,03 MPa)	13,8 bar (1,38 MPa)	17,2 bar (1,72 MPa)	21 bar (2,1 MPa)
TJ75-1858-234	_	_	_	76	87	95	102
TJ75-1858-234LP	_	49	57	68	_	_	_
TJ75-1858-172	_	_	_	57	68	76	83
TJ75-1858-172LP	_	42	49	57	_	_	_
TJ75-1861-172	_	_	_	87	110	117	125
TJ75-1861-172LP	42	57	68	83	_	_	_
TJ75-1861-125	_	_	_	57	72	76	80
TJ75-1861-125LP	30	42	45	57	_	_	_

Maße

TankJet 75-1858

TankJet 75-1861

Bestellhinweise

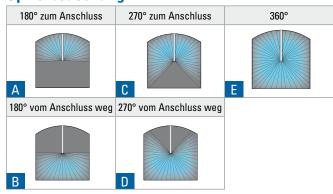
Taı	nkreinigun	igsaggre	gat	T ank J et	. 75
TJ75	B* -	1858	_	234	LP
1	1	1		1	1
Modell Nr.	Anschluss- typ	Modell- typ		Düsen- öffnung	Nieder- druck

^{*} Kürzel "B" einfügen, wenn BSPT-Anschluss gewünscht wird. Für NPT-Anschluss frei lassen.

Spritzbedeckung

ROTIERENDE HYDRAULISCHE TANKREINIGUNGSDÜSEN

Rotierende Düsen aus PTFE für Reinigungsund Spüleinsätze in korrosiven Umgebungen


Konstruktionsmerkmale und Vorteile

- Besonders geeignet für CIP-Anlagen da die Reinigungsflüssigkeit gleichzeitig als Antriebsflüssigkeit für den Reinigungskopf dient, ist kein Motor erforderlich
- · Höhere Aufprallkraft als statische Kugelkopfdüsen
- Langlebiger Werkstoff korrosions- und chemikalienbeständiges PTFE
- Das Düsenmodell D27500 mit Anschluss 1/2" bzw. 3/4" besteht aus graphitgefülltem PTFE und bietet daher bessere thermische Eigenschaften und eine höhere mechanische Beständigkeit als die Standardausführung
- Spritzwinkel von 180° bis 360° zur Reinigung bestimmter Bereiche oder des gesamten Tankinneren
- Beim Modell 27500R lässt sich der Rotationskopf für Inspektions- und Wartungszwecke leicht demontieren
- Für eine optimale Betriebssicherheit des Rotationskopfes empfehlen wir den Einsatz eines Leitungsfilters, um das Eindringen von Rückständen zu verhindern

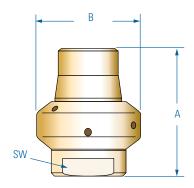
Spezifikationen Max. 7,6 m Tankdurchmesser: Volumen-15,3 bis 1490 l/min strombereich: empf. Druckbereich: 0,7 bis 3,5 bar (0,07 bis 0,35 MPa) Max. Arbeitsdruck 3,5 bar (0,35 MPa) (bei 20 °C): Max. Betriebs-93 °C temperatur:* Min. Behälter-51 bis 178 mm abhängig öffnung: von der Leistungsgröße 180°, 270° (Spritzrichtung jeweils Spritzbedeckung: zum Anschluss oder vom Anschluss weg) und 360° **Anschluss** 1/2" bis 3" NPT oder BSPT (IG) TankJet 27500: Anschluss 1/2" bis 1" NPT oder BSPT (IG) TankJet 27500R:

Spritzbedeckung

- Papierabfallbehältern in der Papierindustrie
- Tanks in der chemischen Industrie
- Leiterplatten
- Behältern in der pharmazeutischen Industrie
- Prozesstanks

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

Leistungsdaten


	Austritts-		Volumenstrom (I/min)				
Düsen-Nr.	Bohrung (mm)	0,7 bar (0,07 MPa)	1,5 bar (0,15 MPa)	2 bar (0,2 MPa)	3 bar (0,3 MPa)	3,5 bar (0,35 MPa)	Tankdurch- messer (m)
● 27500 (A bis E)-(R)-1/2-8-TEF	2,4	15,3	22	26	32	34	3,0
● 27500 (A bis E)-(R)-3/4-18-TEF	2,4	34	50	58	71	77	4,3
● 27500 (A bis E)-(R)-3/4-32-TEF	4,0	61	89	103	126	136	4,3
● 27500 (A bis E)-(R)-3/4-46-TEF	6,0	88	130	148	182	196	4,3
● 27500 (A bis E)-(R)-1-50-TEF	4,0	95	140	161	197	215	5,5
● 27500 (A bis E)-(R)-1-70-TEF	5,6	133	195	225	275	300	5,5
● 27500 (A bis E)-(R)-1-90-TEF	7,5	172	250	290	355	385	5,5
27500 (A bis E)-2-100-TEF	6,0	191	280	320	395	425	6,0
27500 (A bis E)-2-125-TEF	6,7	240	350	400	495	530	6,0
27500 (A bis E)-2-150-TEF	7,9	285	420	480	590	640	6,0
27500 (A bis E)-2-175-TEF	9,5	335	490	560	690	745	6,0
27500 (A bis E)-2-200-TEF	10,7	380	560	645	790	850	6,0
27500 (A bis E)-3-250-TEF	9,9	475	700	805	985	1065	7,6
27500 (A bis E)-3-300-TEF	10,7	570	840	965	1180	1280	7,6
27500 (A bis E)-3-350-TEF	12,3	665	975	1130	1380	1490	7,6

Hinweis:

• Verfügbar als D-B27500 aus elektrisch leitfähigem Teflon mit ATEX-Zulassung.

(R) = Abnehmbarer Reinigungskopf (optional) Rot eingefärbte Zahlen = Leistungsgröße der Düse

Maße und Gewichte

Düsentyp	Anschluss	А	В	SW	Gewicht
27500, 27500R	1/2"	60,3 mm	49,2 mm	28,6 mm	113 g
27500, 27500R	3/4"	66,6 mm	57,2 mm	33,3 mm	142 g
27500, 27500R	1"	76,2 mm	69,8 mm	45,3 mm	255 g
27500	2"	111,0 mm	123,8 mm	69,8 mm	900 g
27500	3"	149,2 mm	174,6 mm	98,4 mm	2400 g

Bestellhinweise

Ta	nkreini	gungsdüs	se Tank	Jet 275	500
B27500	Е -	- R	- 3/4 -	- 18	- TEF
1	1	1	1	1	1
Düsen- typ	Spritz- be- deckung	Optional: Abnehm- barer Reinigungs- kopf	An- schluss	Leistungs- größe	Werkstoff code

Für BSPT-Gewinde "B" vor den Düsentyp einfügen.

Tankr	Tankreinigungsdüse TankJet D27500 (ATEX-Version)				
D-B27	500E	3/4 -	- 18	TEFEL	– EX
I	I	1	1	1	ı
Düsen- typ	Spritz- be- deckung	An- schluss	Leis- tungs- größe	Werk- stoff code	Atex- Code

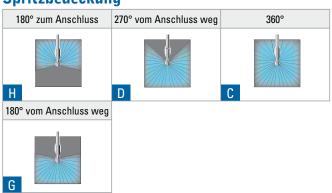
TankJet® 14 und 16

FLÜSSIGKEITSANGETRIEBENE TANKREINIGUNGSDÜSEN

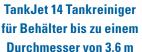
Drehende Köpfe reinigen gründlicher als stationäre Sprühkugeln

Konstruktionsmerkmale und Vorteile

- Gleiches Design und Aussehen wie stationäre Sprühkugeln, jedoch wirksamerer Aufprall der Reinigungsflüssigkeit auf die Behälterwände durch die rotierenden Köpfe
- Die hydraulischen Köpfe mit Turbinenantrieb rotieren mit einer niedrigen Drehzahl von 3–15 U/min; Verweildauer auf der Behälteroberfläche daher länger als bei frei drehenden Sprühköpfen
- Feststrommuster für umfassenden Sprühbereich
- Geeignet für die Reinigung vor Ort und tragbare Geräte
- Der Sprühkopf kann zur Inspektion und Wartung leicht abgenommen werden
- Werkstoff: Edelstahl 316/PTFE


In zwei Versionen erhältlich: TankJet 14:

- Leicht an ein 2-Zoll-Rohr Gr. 40 anzuschließen.
- Für Behälter bis zu einem Durchmesser von 3,6 m

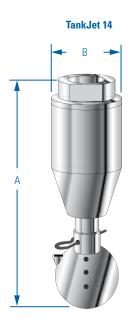

TankJet 16:

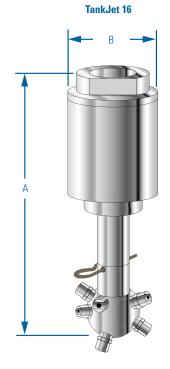
- Leicht an ein 3-Zoll-Rohr Gr. 40 anzuschließen
- Für Behälter bis zu einem Durchmesser von 7,2 m

Spritzbedeckung

TankJet 16 Tankreiniger für Behälter bis zu einem Durchmesser von 7,2 m

Spezifikationen		
Spezilikatione		
	TJ14	TJ16
Volumen- strombereich:	49 bis 129 l/min	114 bis 288 l/min
empf. Druckbereich:	3,4 bis 13,8 bar (0,34 bis 1,38 MPa)	3,4 bis 13,8 bar (0,34 bis 1,38 MPa)
Max. Betriebs- temperatur:*	121 °C	121 °C
Min. Behälter- öffnung:	51 mm	78 mm
Spritzbedeckung:	360°; 270° zum Anschluss, 180° zum Anschluss/ vom Anschluss weg	360°; 270° zum Anschluss, 180° zum Anschluss/ vom Anschluss weg
Anschluss:	3/4" NPT, BSPT (IG)	1-1/2" NPT, BSPT (IG)


^{*} abhängig vom Siededruck der Reinigungsflüssigkeit


- Brauereitanks
- Pharmazeutischen Behältern
- Chemikalienmischanlagen
- Lebensmittelbehältern
- Transportbehältern/Großpackmitteln
- Weintanks

Leistungsdaten

					Volu	menstrom (I	/min)			
Modell Nr.	Spritz- bedeckung	3,4 bar (0,34 MPa)	5 bar (0,5 MPa)	6 bar (0,6 MPa)	7 bar (0,7 MPa)	8 bar (0,8 MPa)	10 bar (1,0 MPa)	11 bar (1,1 MPa)	12 bar (1,2 MPa)	13,8 bar 1,38 MPa)
	D	48,8	61,6	67,0	74,3	78,1	86,6	94,5	100,5	106,0
TJ-14	G, H	60,1	71,2	78,1	87,7	89,3	100,1	105,8	111,6	121,1
	С	63,9	75,1	81,8	95,3	96,7	107,8	113,3	119,1	128,7
T.1.40	Н	135,3	165,6	182,3	198,2	212,1	234,9	245,6	256,7	276,3
TJ-16	D, C, G	150,3	181,0	197,2	209,7	223,2	250,3	260,7	275,3	287,7

Maße und Gewichte

Modell Nr.	Α	В	Gewicht
TJ-14	167 mm	50 mm	1,0 kg
TJ-16	228 mm	77 mm	2.1 kg

Bestellhinweise

Tankreinigungsd	lüse TankJet 14 und 16
TJ14B	– D
ı	1
Modell Nr.	Spritz- bedeckung

Für BSPT-Gewinde "B" hinter der Modell-Nr. einfügen.

FESTSTEHENDE TANKREINIGUNGSDÜSE

Stationärer Mehrfach-Düsenkopf für die zuverlässige Reinigung von tiefen Tanks

Konstruktionsmerkmale und Vorteile

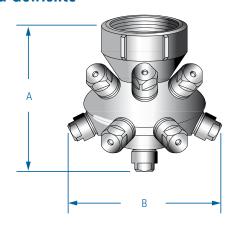
- Bestückt mit 13 FullJet® Düsen für hohe Reinigungsleistungen
- Einfache und zuverlässige Bauweise ohne bewegliche Teile
- Sonderanfertigungen für unterschiedliche Spritzbedeckungen sind möglich
- Für das Spülen besonders tiefer Tanks steht das Modell 12900-2 zur Verfügung, das mit einem zusätzlichen Anschluss (1-1/2") für ein Verlängerungsrohr zum Einsatz eines weiteren Reinigungskopfes (TankJet 6353) ausgestattet ist

Tankreinigungsdüsen TankJet 12900 für Behälterdurchmesser bis 6,7 m

Spezifikationen Max. 6,7 m Tankdurchmesser: Volumen-280 bis 1470 l/min strombereich: **empf. Druckbereich:** 1,5 bis 3,5 bar (0,15 bis 0,35 MPa) Max. Betriebs-100 °C temperatur:* Min. Behälter-254 mm öffnung: Werkstoffe: Messing oder rostfreier Stahl 316 Spritzbedeckung: 360° 3" NPT oder BSPT (IG) Kann mit FullJet Vollkegeldüsen Düsenanschluss: in den Größen 1/2", 3/4" oder 1" bestückt werden

TankJet 12900-2 und 6353 zum Reinigen tiefer Tanks

Spritzbedeckung



- Tanks in der chemischen Industrie
- Faseraufbereitung
- Prozess- und Lagertanks
- Tanklastzügen

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

		Max. freier	Volumenstrom (I/min)					
Düsen-Nr.	FullJet [®] Düsen-Nr.	Querschnitt (mm)	1,5 bar (0,15 MPa)	2 bar (0,2 MPa)	3 bar (0,3 MPa)	3,5 bar (0,35 MPa)		
12900-1-1/2	1/2HH-40	3,6	280	320	390	415		
12900-1-3/4	1/2HH-7	5,2	580	660	800	860		
12900-1-1	1/2HH-12	6,4	1000	1130	1370	1470		

Maße und Gewichte

Düsen-Nr.	Α	В	Gewicht
12900-1-1/2	166 mm	191 mm	6,2 kg
12900-1-3/4	174 mm	210 mm	6,9 kg
12900-1-1	183 mm	229 mm	8,2 kg

Bestellhinweise

 $\label{linear_continuity} \mbox{K\"{u}rzel ",B" vor D\"{u}sennummer und D\"{u}sentyp einf\"{u}gen,} \\ \mbox{wenn BSPT-Anschl\"{u}sse gew\"{u}nscht werden.}$

Rokon®-TankJet® D26984 & D40159

ROTIERENDE TANKREINIGUNGSDÜSEN MIT EIGENANTRIEB

Herausragende Reinigungskraft bei konstanter Drehzahl, verschiedene Spritzbedeckungen verfügbar

Konstruktionsmerkmale und Vorteile

- Der von der Reinigungsflüssigkeit angetriebene Rotationskopf ist mit drei Flachstrahldüsen ausgestattet
- Erzielt eine überzeugende Reinigungsleistung bei einer fast konstanten Drehzahl
- Hohe Aufprallkraft durch langsame Rotation (2–30 U/min)
- Höhere Reinigungswirkung, da die Aufprallkraft der Reinigungsflüssigkeit bis zu viermal so hoch ist wie bei konventionellen Rotationsdüsen
- Hervorragend geeignet für Reinigung und Desinfektion sowie für Schaum als Antriebs- und Spülmedium; längere Verweilzeit des Reinigungsmediums auf der Tankoberfläche aufgrund konstanter Drehzahl
- PVDF-Düsenkörper aus chemikalien- und korrosionsbeständigem Kynar[®] mit PTFE-Scheibe und Hülse aus Polyethylen
- Auch mit Düsenkörper aus rostfreiem Stahl 303 oder 316 und Hülse und Scheibe aus PTFE lieferbar
- Düsen mit hygienegerechtem Steckanschluss oder Wandanschluss auf Anfrage

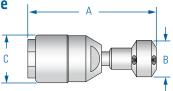
Spezifikationen	
Max. Tankdurchmesser:	6,0 m
Volumen- strombereich:	12,0 bis 128 l/min
empf. Druckbereich:	2 bis 6 bar (0,2 bis 0,6 MPa)
Max. Betriebs- temperatur:*	70 °C
Min. Behälter- öffnung:	Gewinde: 56 mm CIP: 110 mm
Spritzbedeckung:	D40159 – 65°, 120°, 180° und 270°; D26984 – 360°
Düsenanschluss:	1/2" NPT oder BSPT bei Ausführung aus rostfreiem Stahl; 3/8" und 1/2" NPT oder BSPT bei Ausführung aus PVDF; CIP 213, 222, 252

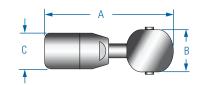
^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

Düsen der Baureihe Rokon-TankJet D26984 und D40159 sind als Ausführung aus rostfreiem Stahl bzw. PVDF erhältlich; Düsen aus rostfreiem Stahl auch als ATEX-Version für den Einsatz in explosionsgefährdeten Bereichen lieferbar.

Hinweis: Es gibt 2 verschiedene Kunststoffausführungen. Komplett aus PVDF (siehe Abbildung) und als PVDF Version mit Edelstahl-Düseneinsätze.

- Behältern in der chemischen Industrie
- Behältern in der Nahrungsmittelindustrie
- Mischtanks
- Behältern in der pharmazeutischen Industrie


Spritzbedeckung D26984 (360° Spritzbedeckung) und D40159 (andere Spritzbedeckungen)


Spritzwinkel	180° zum Anschluss	180° vom Anschluss weg	270° zum Anschluss	270° vom Anschluss weg	360° (nur für D26984)	120° vom Anschluss weg	65° vom Anschluss weg
Leistungs größe	A	В	C	D	E	G	K
3.2	•			•	•	•	
4.5	•	•		•	•	•	
9.9	•	•	•	•	•	•	•
13.6	•	•	•	•	•		

Leistungsdaten

Düsen-			Volumenstrom (I/min)					
	nschluss Leistungs- größe		2 bar	3 bar	5 bar	6 bar	10 bar	
3/8	1/2	J	(0,2 MPa)	(0,3 MPa)	(0,5 MPa)	(0,6 MPa)	(1,0 MPa)	
•	•	3.2	11	13	17	19	26	
•	•	4.5	14	18	23	25	32	
	•	9.9	33	40	52	55	72	
	•	13.6	44	55	70	74	99	

Maße und Gewichte

Ausführung aus PVDF

Α	Βø	Сø	Gewicht	
146 mm	49 mm	49 mm	0,19 kg	

Ausführung aus rostfreiem Stahl 1.4305 oder 1.4571

Α	Βø	Сø	Gewicht	
146 mm	50 mm	41 mm	0,7 kg	

Bestellhinweise

Tan	kreinigur	igsdüse Ro	kon-TankJe	t D2	26984
D26	984 E	- B3/8	KY	_	3.2
ı	1	1	1		1
Düsen- typ	Spritz- bedeckung	Düsen- an- schluss*	Werkstoff- Code**		Leistungs- größe

Tankreinigungsdüse Rokon-TankJet D40159

D40	159 G	_	B3/8	A4	- 3.2	_	EX
1	1		I	1	1		1
Düsen- typ	Spritz- bedeckung		Düsen- an- schluss*	Werkstoff- Code**	Leistungs- größe	-	ATEX Code

** Werkstoff-Code

KY: Düsenkörper und Düseneinsätze aus PVDF (Kynar®); Lager aus PTFE und PE; [nur 360° Spritzbedeckung]

KYA2: Düsenkörper aus PVDF (Kynar®) und Düseneinsätze aus Edelstahl 1.4305; Lager aus PTFE und PE; [nur für Spritzbedeckung ≠ 360°]

A2: Düsenkörper und Düseneinsätze aus Edelstahl 1.4305; Lagerbuchse PTFE; [nicht in den Leistungsgrößen 3.2 und 4.5 verfügbar]

A4: Düsenkörper und Düseneinsätze aus Edelstahl 1.4571; Lagerbuchse PTFE; [nicht in den Leistungsgrößen 3.2 und 4.5 verfügbar]

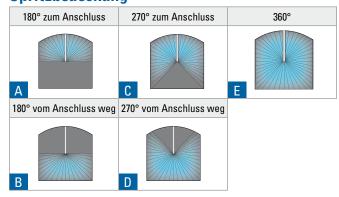
* "B" für BSPT-Gewinde ergänzen, kein Code für NPT-Gewinde

Aufgrund der Fülle unterschiedlicher Düsenanschluss-Werkstoff-Kombinationen wenden Sie sich bitte an unsere Anwendungstechnik, um Fehler zu vermeiden.

TankJet® 28500 & 28500R

ROTIERENDE TANKREINIGUNGSDÜSEN MIT EIGENANTRIEB

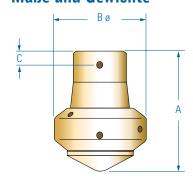
Hygienegerechte, rotierende Düsen mit hervorragender Reinigungswirkung für den Einsatz in korrosiven Umgebungen


Konstruktionsmerkmale und Vorteile

- Die gewindelose, konische Bauweise gewährleistet ein selbsttätiges Leerlaufen und verhindert so Materialablagerungen
- Gut geeignet für CIP-Anlagen da die Reinigungsflüssigkeit gleichzeitig als Antriebsflüssigkeit für den Reinigungskopf dient, ist kein Motor erforderlich
- Höhere Aufprallkraft als statische Kugelkopfdüsen
- Die Rohrverbindung erfolgt durch einen Stift aus rostfreiem Stahl 316
- Entspricht dem 3-A Sanitary Standard 78-01 für CIP-fähige Reinigungsgeräte (gilt nicht für Spritzwinkel 180° mit Spritzrichtung zum Anschluss)
- Gefertigt aus PTFE Fluorpolymerharz ideal für aggressive Reinigungsmedien
- Beim Modell 28500R lässt sich der rotierende Sprühkopf für Prüf- und Wartungszwecke leicht demontieren
- Für eine optimale Betriebssicherheit des Rotationskopfs empfehlen wir den Einsatz eines Leitungsfilters, um das Eindringen von Rückständen zu verhindern

Spezifikationen Max. 5,5 m Tankdurchmesser: Volumen-34 bis 295 l/min strombereich: empf. Druckbereich: 0,7 bis 3,5 bar (0,07 bis 0,35 MPa) Max. Betriebs-93 °C temperatur:* Min. Behälter-64 bis 102 mm abhängig von der Leistungsgröße öffnung: 180°, 270° (Spritzrichtung jeweils Spritzbedeckung: zum Anschluss oder vom Anschluss weg) und 360° Hygienegerechter Steckanschluss für Rohrleitungen in den Größen 3/4", Düsenanschluss: 1", 1-1/2" DN20, DN25 und DN40

Spritzbedeckung



- Tanks in der chemischen Industrie
- Behältern in Molkereien
- Behältern in der Nahrungsmittelindustrie
- Behältern in der pharmazeutischen Industrie

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

	Austritts-	Volumenstrom (I/min)						
Düsen-Nr.	bohrung (mm)	0,7 bar (0,07 MPa)	1,5 bar (0,15 MPa)	2 bar (0,2 MPa)	3 bar (0,3 MPa)	3,5 bar (0,35 MPa)		
28500 (A bis E)-3/4-18-TEF	2,3	34	50	58	71	77		
28500 (A bis E)-DN20-18-TEF	2,3	34	50	58	71	77		
28500 (A bis E)-3/4-23-TEF	2,8	44	64	74	91	99		
28500 (A bis E)-DN20-23-TEF	2,8	44	64	74	91	99		
28500 (A bis E)-3/4-32-TEF	3,9	61	89	103	126	136		
28500 (A bis E)-DN20-32-TEF	3,9	61	89	103	126	136		
28500 (A bis E)-3/4-46-TEF	6,5	88	128	148	181	196		
28500 (A bis E)-DN20-46-TEF	6,5	88	128	148	181	196		
28500 (A bis E)-1-33-TEF	3,9	63	92	106	131	141		
28500 (A bis E)-DN25-33-TEF	3,9	63	92	106	131	141		
28500 (A bis E)-1-50-TEF	5,3	95	140	161	197	213		
28500 (A bis E)-DN25-50-TEF	5,3	95	140	161	197	213		
28500 (A bis E)-1-70-TEF	6,8	133	195	226	276	298		
28500 (A bis E)-DN25-70-TEF	3,8	133	195	226	276	298		
28500 (A bis E)-1-1/2-53-TEF	5,1	101	148	171	209	226		
28500 (A bis E)-DN40-53-TEF	5,1	101	148	171	209	226		
28500 (A bis E)-1-1/2-70-TEF	6,8	132	185	231	265	295		
28500 (A bis E)-DN40-70-TEF	5,8	132	185	231	265	295		

Maße und Gewichte

Düsen- anschluss	Innendurch- messer	Α	Вø	С	Gewicht
3/4"	22,2 mm	66,6 mm	57,2 mm	9,5 mm	142 g
DN20		66,6 mm	57,2 mm	9,5 mm	142 g
1"	20.2 mm	73,0 mm	69,8 mm	12,7 mm	227 g
DN25	28,2 mm	73,0 mm	69,8 mm	12,7 mm	227 g
1-1/2"	40.2 mm	92,0 mm	92,0 mm	19,0 mm	500 g
DN40	40,2 mm	92,0 mm	92,0 mm	19,0 mm	500 g

Länge Steckanschluss bei Maßen nicht berücksichtigt.

Bestellhinweise

Für BSPT-Gewinde "B" hinter der Modell-Nr. einfügen.

TankJet® 9

HYDRAULISCHE TANKREINIGUNGSDÜSE

Frei drehende Reinigungsdüsen zur wirksamen Reinigung Ihrer Behälter

Konstruktionsmerkmale und Vorteile

- Flachstrahldüsen in einem rotierenden Sprühkopf werden allein durch die Reinigungsflüssigkeit angetrieben
- · Einfach und zuverlässig ohne Kugellager
- Kann in jeder Stellung ob senkrecht oder waagrecht wirksam reinigen
- · Geeignet für die Reinigung vor Ort und Sterilisierungen
- Auch für chemische Dosierung und Passivierung verwendbar
- Aus Edelstahl 316 mit Kunststofflagern

In drei Versionen erhältlich:

TankJet 9-A

- Zwei Flachstrahldüsen erzeugen einen seitlichen Düsenstrom
 Bereich von 2 x 175°
- Niedriger Durchfluss bis zu 18,9 l/min
- Für Behälter bis zu einem Durchmesser von 1,8 m

TankJet 9-B

- Sechs Flachstrahldüsen decken den gesamten Behälter zu 360° ab
- Durchfluss bis zu 64 l/min
- Für Behälter bis zu einem Durchmesser von 3,6 m

TankJet 9-C

- Sechs Flachstrahldüsen decken den gesamten Behälter zu 360° ab
- Hoher Durchfluss bis zu 144 l/min
- Für Behälter bis zu einem Durchmesser von 4,8 m

Tankreiniger TankJet 9
für Behälter bis zu einem Durchmesser von 4.9 m

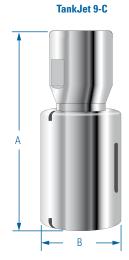
Spezifikationen								
Modell Nr.	TJ9-A	TJ9-A TJ9-B TJ9-C						
Volumen- strombereich:	4,9 bis 18,9 l/min	18,9 bis 64 l/min	45 bis 144 l/min					
empf. Druckbereich:	0,7 bis 8,3 bar (0,07 bis 0,83 MPa)							
Max. Betriebs- temperatur:*		88 °C						
Min. Behälter- öffnung:	27 mm	35 mm	42 mm					
Spritz- bedeckung:	2 x 175°	360°	360°					
Anschluss:	3/8" NPT, BSPT (IG)	1/2" NPT, BSPT (IG)	3/4" NPT, BSPT (IG)					

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

Hervorragend geeignet zur Reinigung von:

- Brauereitanks
- Chemikalienbehältern
- Fässern und Fässchen
- · Lebensmittelbehältern
- Pharmazeutischen Behältern
- Weinfässern und Weintrögen

Spritzbedeckung


2 x 175°	360°
	Ü

	Volumenstrom (I/min)						
Düsen-Nr.	0,7 bar (0,07 MPa)	2 bar (0,2 MPa)	3 bar (0,3 MPa)	5 bar (0,5 MPa)	6 bar (0,6 MPa)	7 bar (0,7 MPa)	8,3 bar (0,83 MPa)
TJ9-A	5,0	9,3	10,6	15,4	16,7	17,9	18,9
TJ9-B	19,1	29,8	38,8	50,1	52,1	57,2	64,9
TJ9-C	45,7	74,4	88,2	115,5	122,8	133,4	144,0

Maße und Gewichte

TankJet 9-A

Düsen-Nr.	Α	В	Gewicht
TJ9-A	59 mm	27 mm	0,15 kg
TJ9-B	88 mm	35 mm	0,26 kg
TJ9-C	102 mm	42 mm	0,44 kg

Bestellhinweise

Tankreinigungsdüse TankJet 9					
TJ9B	_	Α			
l Modell Nr.		l Typ			

Für BSPT-Gewinde "B" hinter die Modell-Nr. einfügen.

TankJet® 63225 & 63225-3A

FESTSTEHENDE TANKREINIGUNGSKÖPFE

Stationäre Sprühkugeln in hygienegerechter Bauweise, ideal für Reinigen und Spülen

Konstruktionsmerkmale und Vorteile

- CIP-gerecht keine beweglichen Teile
- Kostengünstige Abreinigung von leicht anhaftenden Rückständen
- Spritzbedeckung 180° oder 360°
- Einbauposition beliebig
- · Großer Einsatzbereich in Bezug auf Reinigungsmedien durch Bauweise aus rostfreiem Stahl 316L
- Sprühkugeln 63225-3A für Hygieneanwendungen:
 - Oberflächen innen und außen auf 32 Ra poliert
 - Gewindelose, selbstreinigende Bauweise verhindert Ablagerungen

Spezifikationen	
Max. Tankdurchmesser:	4 m
Volumen- strombereich:	83 bis 192 l/min
empf. Druckbereich:	1,0 bis 2,8 bar (0,01 bis 0,28 MPa)
Max. Betriebs- temperatur:*	204 °C
Min. Behälter- öffnung:	87 bis 118 mm
	TankJet 63225 360°
Spritzbedeckung:	TankJet 63225 180° zum Anschluss, 180° vom Anschluss weg, 360°, kundenspezifische Anordnung der Reinigungsöffnungen auf Anfrage
Rohranschluss:	3/4", 1" TankJet 63225 3/4", 1", 1-1/2" TankJet 63225-3A

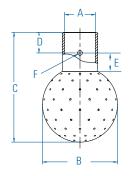
^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

Spritzbedeckung

TankJet 63225-3A für Behälterdurchmesser bis 4 m

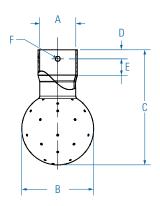
Hervorragend geeignet zur Reinigung von:

- Behältern in der chemischen Industrie
- Behältern und Tanks in der Nahrungsmittelindustrie
- Behältern in der pharmazeutischen Industrie


Hinweis: Kundenspezifische Anordnung der Reinigungsöffnungen möglich beim Modell 63225-3A. Wenden Sie sich an unsere Verkaufsbüros.

Spritzwinkel	180° zum Anschluss	180° vom Anschluss weg	360°	
Düsentyp	A	В	E	
63225			•	
63225 - 3A	•	•	•	

		Max.		
Düsentyp/ -größe	1,0 bar (0,1 MPa)	1,52 bar (0,152 MPa)	2,06 bar (0,206 MPa)	Tankdurchmesser (m)
63225E-3/4-22-316L	83	102	117	3,0
63225E-1-32-316L	121	148	170	4,0


		Max.		
Düsentyp/ -größe	1,0 bar (0,1 MPa)	1,7 bar (0,17 MPa)	3 bar (0,3 MPa)	Tankdurchmesser (m)
63225E75-1.5-40-3A	115	151	192	3,0
63225E-1-2-40-3A	115	151	192	4,0
63225A-1.5-2.5-40-3A	115	151	192	4,0
63225E-1.5-2.5-40-3A	115	151	192	4,0
63225E-1.5-3-40-3A	115	151	192	4,0
63225E-1.5-4-40-3A	115	151	192	4,0

Maße

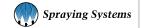
63225

Düsentyp/ -größe	An- schluss	В	С	D	E	Splint F
63225E-3/4-22-316L	3/4"	51 mm	93 mm	13 mm	31,8 mm	3,3 mm
63225E-1-32-316L	1"	64 mm	112 mm	13 mm	39,6 mm	3,3 mm

63225-3A

Düsentyp/ -größe	An- schluss	В	С	D	E	Splint F
63225E75-1.5-40-3A	3/4"	38,1 mm	64,3 mm	9,5 mm	6,4 mm	3,6 mm
63225E-1-2-40-3A	1"	50,8 mm	84,1 mm	9,5 mm	9,5 mm	3,6 mm
63225A-1.5-2.5-40-3A	1- 1/2"	63,5 mm	108,0 mm	6,4 mm	19,1 mm	5,2 mm
63225E-1.5-2.5-40-3A	1- 1/2"	63,5 mm	108,0 mm	6,4 mm	19,1 mm	5,2 mm
63225E-1.5-3-40-3A	1- 1/2"	76,2 mm	121,4 mm	6,4 mm	19,1 mm	5,2 mm
63225E-1.5-4-40-3A	1- 1/2"	101,6 mm	146,0 mm	6,4 mm	19,1 mm	5,2 mm

Bestellhinweise


Tankreinigungsdüse TankJet 63225						
B63225	Ε -	- 3/4	- 22	- 316L		
I	1	I	1	1		
Düsen- typ	Spritz- bedeckung	Rohr- anschluss	Leistungs- größe	Werkstoff- Code		

Für BSPT-Gewinde "B"in die Bestellnummer einfügen.

Tankreinigungsdüse TankJet 63225-3A							
B63225	E -	75	1.5	- 40	- 3A		
1	1	1	1	1	1		
Düsen- typ	Spritz- bedeckung	Rohr- anschluss	Kugel- durch- messer	Leistungs- größe	3A Kennzeichen		

Für BSPT-Gewinde "B"in die Bestellnummer einfügen.

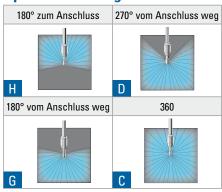
Weitere Sprühkugeln in versch. Werkstoffen und mit den Spritzwinkeln 360°, 180° vom Anschluss weg, 180° zum Anschluss hin und 270° vom Anschluss weg im Programm. Siehe hierzu Bulletin 1.064a.

TankJet® 19

FLÜSSIGKEITSBETRIEBENE TANKREINIGUNG

Schlanke, einfache Konstruktion für die Reinigung von Behältern mit kleiner Öffnung

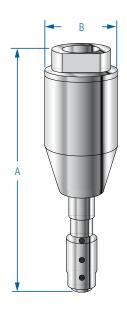
Konstruktionsmerkmale und Vorteile


- Passt sogar in Behälteröffnungen von 51 mm, der Aufsatz sogar in noch kleinere Fässer oder Spundlöcher (von 22 mm)
- Schlanke Konstruktion, daher weniger Ansammlung von Restsubstanzen und einfachere Wartung
- Vier Bohröffnungen gewährleisten eine optimale Beaufschlagung und Reinigung der Behälteroberfläche
- Der flüssigkeitsangetriebene Kopf rotiert mit einer niedrigen Drehzahl von 3–15 U/min; Verweildauer auf der Behälteroberfläche daher länger als bei frei drehenden Sprühköpfen
- · Geeignet für die Reinigung vor Ort und tragbare Geräte
- · Senkrecht, waagrecht oder in beliebigen Winkeln installierbar
- Werkstoff: Edelstahl 316/PTFE

TankJet 19 Behälterreiniger für Behälter bis zu einem Durchmesser von 3,6 m

Spezifikationen Volumen-38 bis 114 l/min strombereich: empf. 3,4 bis 13,8 bar (0,34 bis 1,38 MPa) Druckbereich: Max. Betriebs-121 °C temperatur:* Min. Behälter-51 mm öffnung: 360°; 270°; 180° zum Anschluss/ Spritzbedeckung: vom Anschluss weg Anschluss: 3/4" NPT, BSPT (IG)

Spritzbedeckung



- Chemikalienmischanlagen
- Fässern und Fässchen
- Lebensmittelbehältern
- Pharmazeutischen Behältern
- Tablettendragiermaschinen

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

		Volumenstrom (I/min)								
Modell Nr.	Modell Spritz- Nr. bedeckung	3,4 bar (0,34 MPa)	5 bar (0,5MPa)	6 bar (0,6 MPa)	7 bar (0,7 MPa)	8 bar (0,8 MPa)	10 bar (1,0 MPa)	11 bar (1,1 MPa)	12 bar (1,2 MPa)	13,8 bar (1,38 MPa)
	Н	37,6	50,1	55,8	61,0	67,0	75,1	79,3	83,7	90,8
T 1 10	G	45,1	53,9	61,4	66,7	70,7	80,9	85,0	89,3	98,4
TJ-19	D	60,1	69,3	74,4	80,1	83,7	92,4	98,2	102,3	107,9
	С	63,9	73,2	78,1	83,9	89,3	98,2	103,9	107,9	113,6

Maße und Gewicht

Düsen-Nr.	А	В	Gewicht
TJ-19	169 mm	50 mm	0,9 kg

Bestellhinweise

Für BSPT-Gewinde "B" hinter der Modell-Nr. einfügen.

MiniRokon®-TankJet® D41800

ROTIERENDE TANKREINIGUNGSDÜSEN MIT EIGENANTRIEB

Kompakte Bauweise, konstante Drehzahl Hervorragende Reinigungsleistung

Konstruktionsmerkmale und Vorteile

- Der von der Reinigungsflüssigkeit angetriebene Düsenkopf verfügt über 3 rotierende Flachstrahldüsen.
- Hohe Aufprallkraft durch langsame Rotation (2 bis 30 U/min)
- Höhere Reinigungswirkung, da die Aufprallkraft der Reinigungsflüssigkeit bis zu viermal so hoch ist wie bei konventionellen Rotationsdüsen
- Hervorragend geeignet für Reinigung und Desinfektion sowie für Schaum als Antriebs- und Spülmedium; längere Verweilzeit des Reinigungsmediums auf der Tankoberfläche aufgrund der konstanten Drehzahl
- Kompakt passt in fast alle kleinen Tanköffnungen ab 31 mm
- Patentierte "hydraulische" Gleitlagerung dadurch keine störanfälligen Kugellager
- Vollständig aus rostfreiem Stahl für höchste Verschleißfestigkeit
- zertifiziert nach ATEX für den Einsatz in explosionsgefährdeten Bereichen
- Mit CIP-Anschluss nach 3-A Sanitary Standard 78-01 für fest montierte CIP-Reinigungsgeräte
- Für hohe Betriebstemperaturen bis 150°C
- Elektropolierte Version auf Anfrage

Tankreinigungsdüsen mit fast konstanter Drehzahl TankJet D41800E für Behälterdurchmesser bis 3,7 m

CIP-Anschluss entspricht dem 3A Sanitary Standard für CIP-fähige Reinigungsgeräte

Spezifikationen

Max. Größe 3.2: 3 m

Tankdurchmesser: Größe 4.5/9.2/13.6: 4 bis 5 m

Volumen-

10,8 bis 128 l/min

empf. Druckbereich: 2 bis 12 bar (0,2 bis 1,2 MPa)

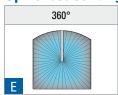
Max. Betriebstemperatur:*

strombereich:

150 °C

Min. Behälteröffnung: Gewinde: 31 mm CIP: 50 mm

Spritzbedeckung:

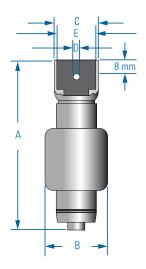

011 . 00 111

Düsenanschluss:

360° 3/8" NPT oder BSPT, CIP 182, CIP 192

Werkstoffe: 1.4305, 1.4404, 2.4819

Spritzbedeckung



- Behältern in der chemischen Industrie
- Behältern in der Nahrungsmittelindustrie
- Mischtanks
- Behältern in der pharmazeutischen Industrie

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

	Volumenstrom (I/min)						
Leistungs- größe	2 bar (0,2 MPa)	3 bar (0,3 MPa)	5 bar (0,5 MPa)	6 bar (0,6 MPa)	10 bar (1,0 MPa)		
3.2	11	13	17	19	26		
4.5	14	18	23	25	32		
9.9	33	40	52	55	72		
13.6	44	55	70	74	99		

Maße und Gewichte

Düsentyp	Anschluss	Α	В	С	D	Е	Gewicht
	3/8"	78 mm	30 mm	21,0 mm	_	_	0,13 kg
D41000	B 3/8"	78 mm	30 mm	21,0 mm	_	_	0,13 kg
D41800	CIP 182	82 mm	30 mm	21,0 mm	2,4 mm	18,2 mm	0,13 kg
	CIP 192	82 mm	30 mm	21,6 mm	2,4 mm	19,2 mm	0,13 kg

Länge Steckanschluss bei Maßen nicht berücksichtigt.

Bestellhinweise

Kürzel "B" vor dem Anschluss einfügen, wenn BSPT-Anschluss gewünscht wird.

* Werkstoffe: A2 = 1.4305

A4 = 1.4404

HC = 2.4819 (Hastelloy)

** Sonderkennung: ohne = Standard

3A = 3A Sanitary Standard 78-01

EX = ATEX

Tankreinigungsdüse MiniRokon-TankJet D41800 mit CIP Anschluss

192 A4 D41800 E -9.9 EX ı I CIP Düsen-Werk-Leistungs-**ATEX** Anstoffgröße Code schluss Code*

TankJet® 6353 & 6353-MFP

FESTSTEHENDE TANKREINIGUNGSKÖPFE

Stationäre Mehrfach-Düsenköpfe für eine zuverlässige Reinigung

Konstruktionsmerkmale und Vorteile

- Bestückt mit 13 FullJet® Düsen für hohe Reinigungsleistungen
- Einfache und zuverlässige Bauweise ohne bewegliche Teile
- TankJet 6353-MFP für erhöhte Spülkraft durch FullJet Düsen mit großen freien Querschnitten; MFP-Bauweise reduziert zudem die Verstopfungsgefahr
- Spritzbedeckung variabel, da einzelne Düsen durch Stopfen ersetzt werden können
- Düsen leicht demontierbar für Reinigung und Inspektion
- Einbauposition beliebig; Sonderanfertigungen für unterschiedliche Spritzbedeckungen sind möglich

Spezifikationen

TankJet 6353: Werkstoffe

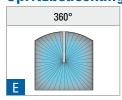
TankJet 6353-MFP:

Spritzbedeckung:

Düsenanschluss:

mit Anschluss 3/8"

Max. 3,0 m Tankdurchmesser: Volumenstrombereich 35 bis 230 l/min TankJet 6353: Volumenstrombereich 93 bis 301 l/min TankJet 6353-MFP: empf. Druckbereich: 1,5 bis 3,5 bar (0,15 bis 0,35 MPa) Max. Betriebs-100 °C temperatur:* Min. Behälter-152 mm öffnung: Werkstoffe

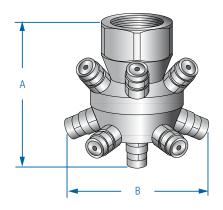

Messing, rostfreier Stahl 303 oder 316

Messing oder rostfreier Stahl 316

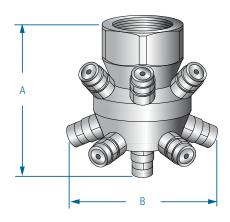
1-1/2" NPT oder BSPT (IG)

* abhängig vom Siededruck der Reinigungsflüssigkeit

Spritzbedeckung



- Behältern in der chemischen Industrie
- Prozesstanks
- Lagertanks


		Max. freier	Volumenstrom (I/min)				
Düsen- Nr.	Düsen- FullJet® Querschnitt 15 har		2 bar (0,2 MPa)	3 bar (0,3 MPa)	3,5 bar (0,35 MPa)		
6353	1/4GG-5	1,3	35	40	48	52	
6353	1/4GG-10	1,6	70	80	97	104	
6353	1/4GG-22	2,8	155	177	215	230	
6353	3/8 HHMFP6014	3,2	93	108	118	123	
6353	3/8 HHMFP6022	4,0	143	167	187	204	
6353	3/8 HHMFP6032	4,8	206	246	276	301	

Maße und Gewichte

TankJet 6353

Düsen-Nr.	Α	В	Gewicht
6353-1/4GG-5	114 mm	114 mm	1,6 kg
6353-1/4GG-10	114 mm	114 mm	1,6 kg
6353-1/4GG-22	121 mm	127 mm	2,0 kg

TankJet 6353-MFP

Düsen-Nr.	Α	В	Gewicht
6353-3/8HHMFP6014	114 mm	114 mm	1,6 kg
6353-3/8HHMFP6022	114 mm	114 mm	1,6 kg
6353-3/8HHMFP6032	114 mm	114 mm	1,6 kg

Bestellhinweise

Tankreinigungsdüse TankJet 6353							
B6353	_	1/4GG	_	316SS	5		
I		1		1	1		
Düsen- Nr.		Düsen- typ		Werkstoff- Code	Leistungs- größe		

Kürzel "B" vor dem Anschluss einfügen, wenn BSPT-Anschluss gewünscht wird.

Tankreinigungsdüse TankJet 6353-MFP						
B6353	– 3/8HHMFP –	316SS	14			
1	1	1	I			
Düsen- Nr.	Düsen- typ	Werkstoff- Code	Leistungs- größe			

TankJet® AA090

TANKREINIGER MIT MOTORANTRIEB

Reinigung mit hoher Aufprallkraft, einfache Montage

Konstruktionsmerkmale und Vorteile

- · Vielfältig einsetzbarer Tankreiniger mit hoher Aufprallkraft für effiziente, zuverlässige Reinigung, praktisch wartungsfrei
- · Speziell für Ihre Reinigungsaufgaben konfigurierbar.
 - Druckluftmotor (AG), Elektromotor (E)
 - Düsengröße
 - Schaftlänge 0,5 / 0,9 / 1,2 / 1,8 m
 - Optionaler Einstellflansch für die genaue Positionierung des Rotationskopfs im Tank
- Vollstrahldüsen rotieren in unterschiedlichen Ebenen für eine vollständige Bedeckung der gesamten Tankoberfläche und somit gründliche Reinigung
- Motor befindet sich außerhalb des Tanks, daher kein Kontakt mit schädlichen Laugen
- · Geringes Gewicht kann fest installiert oder für mobile Reinigungsaufgaben eingesetzt werden
- Lange Lebensdauer durch korrosionsbeständigen rostfreien Stahl 316 und Dichtungen aus PTFE

Druckluft Wartungseinheit. Eine regelmäßige Schmierung der Druckluftleitung trägt wesentlich zur Verlängerung der Lebensdauer des Motors

Spezifikationen

Max. Tankdurchmesser:

2,4 m

Volumenstrombereich:

5,7 bis 28 l/min

empf. Druckbereich: 7 bis 35 bar (0,7 bis 3,5 MPa)

Max. Betriebs-

temperatur:*

93 °C

Min. Behälter-

59 mm

öffnung:

Motor:

360°

Spritzbedeckung: Düsenanschluss:

1" NPT oder BSPT (IG)

Druckluftmotor, Elektromotor

Schaftlängen:

0,5/0,9/1,2/1,8 m

Spritzbedeckung

- Fässern
- Prozesstanks
- Tauchhecken

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

Gesamtvolumenstrom für 2 Düsen gleicher Leistung (I/min) Flüssigkeitsdruck*

Düsen-Nr.	7 bar (0,7 MPa)	15 bar (1,5 MPa)	20 bar (2,0 MPa)	30 bar (3,0 MPa)	35 bar (3,5 MPa)
W0005	5,7	7,6	9,1	10,6	12,1
W0010	10,2	14,0	17,0	19,3	22,0
W0014	13,2	17,8	22,0	25,0	28,0

^{*} Die angegebenen Durchflussmengen berücksichtigen bereits den Druckverlust im Tankreiniger.

Reinigungszyklus – Elektromotor (E)

Motortyp	Spannung Frequenz	Drehzahl (U/min)	Stromstärke (Ampère)	Leistung (Watt)	Zeitbedarf (Richtwert) pro Reinigungszyklus (min.)
FI 1.	230 V AC 50 Hz.	3,1	0,39	41	11
Elektromotor	110 V AC 60 Hz.	3,8	0,33	34	9

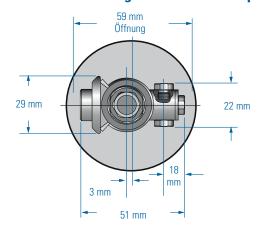
Reinigungszyklus – Druckluftmotor (AG)

Luftdruck [bar (MPa)	Luft- verbrauch (I/min)	Drehzahl (Richtwert) [U/Min]	Zeitbedarf (Richtwert) pro Reinigungs- zyklus (min.)
0,34 (0,034	40	3,2	10
0,48 (0,048	57	6,0	5,5
0,68 (0,068	88	8,2	4

Maße und Gewichte - Elektromotor (E)

Modell Nr.	Schaft- länge	Gesamt- länge	Gewicht
AA090E-1.5	0,5 m	0,7 m	5,7 kg
AA090E-3	0,9 m	1,2 m	6,4 kg
AA090E-4	1,2 m	1,5 m	7,0 kg
AA090E-6	1,8 m	2,1 m	8,4 kg

Bestellhinweise


Tankreiniger TankJet AA090					
Tankreiniger — Düsennr. —					
AAB090AG -	3	+	W	0005	
1	1		1	1	
Tankreiniger- typ	Schaft- länge		Düsen- typ	Leistungs- größe	

Werden BSPT-Anschlüsse gewünscht, Kürzel "B" nach AA im Tankreinigertyp und vor dem Düsenanschluss einfügen.

Maße und Gewichte - Druckluftmotor (AG)

Modell Nr.	Schaft- länge	Gesamt- länge	Gewicht
AA090AG-1.5	0,5 m	0,8 m	5,7 kg
AA090AG-3	0,9 m	1,3 m	6,4 kg
AA090AG-4	1,2 m	1,6 m	7,0 kg
AA090AG-6	1,8 m	2,2 m	8,4 kg

Maße Einlassöffnung für Rotationskopf

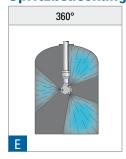
TankJet® 18250A

ROTIERENDE TANKREINIGUNGSDÜSE MIT EIGENANTRIEB

Rotationsdüse für eine vollflächige Reinigung

Konstruktionsmerkmale und Vorteile

- Der von der Reinigungsflüssigkeit angetriebene Rotationskopf ist mit drei Flachstrahldüsen ausgestattet
- Die präzise Anordnung der Düsenöffnungen gewährleistet eine vollflächige Reinigung aller Innenflächen
- · Einbaulage horizontal und vertikal möglich
- Lange Standzeit durch korrosionsbeständige Werkstoffe rostfreier Stahl 316 mit Lagerkäfigen aus Ryton® (Polyphenylensulfid und kolsterisierter rostfreier Stahl) und Hülsen aus 50 % rostfreiem Stahl
- Optimieren Sie die Betriebssicherheit durch einmalige Verwendung frisch angesetzter Reinigungslösung oder durch den Einsatz von Leitungsfiltern für eine partikelfreie Reinigungslösung
- Temperaturbeständig bis 177 °C

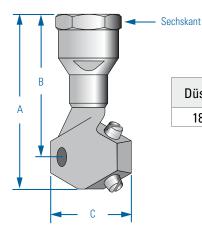


TankJet 18250A
Tankreinigungsdüse für Behälterdurchmesser bis 2,4 m

Spezifikationen Max. 2,4 m Tankdurchmesser: Volumen-48 bis 205 I/min strombereich: empf. Druckbereich: 1 bis 4 bar (0,1 bis 0,4 MPa) Max. Betriebs-95 °C temperatur:* Min. Behälter-60 mm öffnung: Spritzbedeckung: 360° Düsenanschluss: 3/4" NPT oder BSPT (IG)

Ryton® ist ein eingetragenes Warenzeichen der Firma Chevron Phillips Chemical Company LLC.

Spritzbedeckung



- Fässern
- Tanks in der chemischen Industrie
- Bottichen in der Lebensmittelindustrie
- Prozessbehältern

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

	Volumenstrom (I/min)						
Düsen- Nr	1 bar (0,1 MPa)	1,5 bar (0,15 MPa)	2 bar (0,2 MPa)	2,5 bar (0,25 MPa)	3 bar (0,3 MPa)	4 bar (0,4 MPa)	
18250A-316SS21-316SS	48	59	68	76	83	96	
18250A-316SS45-316SS	103	126	145	162	178	205	

Maße und Gewicht

Düsen-Nr.	А	В	С	Sechskant	Gewicht
18250A	138.4 mm	115,5 mm	53.6 mm	34.9 mm	0.73 ka

Bestellhinweise

Tankreinigungsdüse TankJet 18250A						
B18250A	- 316SS	45	_	316SS		
l I	1	1		1		
Düsen- typ	Werkstoff-Code für Lager und Käfige	Leistungs- größe		Werkstoff- Code		

 $\label{prop:control} \textit{K\"{u}}\textit{rzel } \textit{,} \textit{B''} \textit{ vor dem D\"{u}}\textit{sentyp einf\"{u}}\textit{gen}, \textit{wenn BSPT-Anschluss gew\"{u}}\textit{nscht wird}.$

TankJet® 30473

ROTIERENDE TANKREINIGUNGSDÜSE MIT EIGENANTRIEB

Kleine Düsen aus PTFE für das Spülen kleiner Behälter

Konstruktionsmerkmale und Vorteile

- Die Düse wird durch die Reinigungsflüssigkeit angetrieben

 kein Motor erforderlich
- Der rotierende Sprühkopf lässt sich für Inspektion und Wartung leicht demontieren
- Lange Lebensdauer PTFE beständig gegen aggressive Reinigungslösungen
- Passt in kleine Reinigungsöffnungen bis 25 mm
- Leicht wiegt nur 0,02 kg

TankJet 30473 Tankreinigungsdüse für Behälterdurchmesser bis 2,4 m

Spezifikationen

Max.

Tankdurchmesser: 2,4 m

Volumen-

strombereich:

7,8 bis 18 l/min

empf. Druckbereich: 0,7 bis 4 bar (0,07 bis 0,4 MPa)

Max. Betriebs-

93 °C

temperatur:*
Min. Behälter-

öffnung:

25 mm

Spritzbedeckung:

180° zum Anschluss, 180° vom

Anschluss weg, 360°

Düsenanschluss: 1/4" NPT oder BSPT (AG)

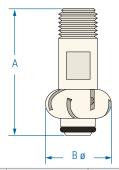
Leistungsdaten

	Volumenstrom (I/min)						
Düsen- Nr.	0,7 bar (0,07 MPa)	1,5 bar (0,15 MPa)	2 bar (0,2 MPa)	3 bar (0,3 MPa)	4 bar (0,4 MPa)		
30473- 1/4-TEF	7,8	11,3	13	15	18		

Bestellhinweise

Tankreinigungsdüse TankJet 30473						
B30473	Ε	_	1/4	_	TEF	
I	1		1		1	
Düsen- typ	Spritz- bedeckung		An- schluss		Werkstoff- Code	

Kürzel "B" vor dem Anschluss einfügen, wenn BSPT-Anschluss gewünscht wird.


Hervorragend geeignet zur Reinigung von:

- Chemikalienbehältern
- Zvlindern
- Rohrleitungen

Spritzbedeckung

•	-	
180° zum Anschluss	180° vom Anschluss weg	360°
A	В	E

Maße und Gewicht

Düsen-Nr.	Α	Βø	Gewicht
30473	44,4 mm	22,3 mm	0,02 kg

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

UniRokon®-TankJet® D41892

ROTIERENDE TANKREINIGUNGSDÜSE MIT EIGENANTRIEB

Leichte Kunststoffdüse für wirksames Spülen

Konstruktionsmerkmale und Vorteile

- Der rotierende Sprühkopf ist mit drei Flachstrahldüsen ausgestattet
- · Der Antrieb erfolgt durch das Reinigungsmedium
- Vollflächiges Spülen der Tankinnenwände durch 360° Spritzbedeckung
- Lange Lebensdauer und Korrosionsbeständigkeit der Düse und Flachstrahldüseneinsätze durch Werkstoff POM bzw. PVDF
- Leicht wiegt nur 0,04 kg
- CIP-Anschluss und ATEX-Version auf Anfrage
- Spezielle Ausführung für den Lebensmittelbereich aus naturweißem PVDF Werkstoff

UniRokon Tankreinigungsdüse D41892 für Behälterdurchmesser bis 2 m

Spezifikationen

Max. 2,0 m Tankdurchmesser:

Volumen-15,9 bis 29 I/min strombereich:

empf. Druckbereich: 2 bis 4 bar (0,2 bis 0,4 MPa)

Max. Betriebstemperatur:*

70 °C

Gewinde: 37 mm Min. Behälter-CIP: 50 mm öffnung:

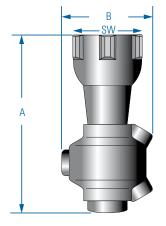
360° Spritzbedeckung:

3/8", 1/2" NPT oder BSPT (IG)

Spritzbedeckung

Hervorragend geeignet zur Reinigung von:

- Chemikalienbehältern
- Lebensmittelbehältern
- **Mischtanks**


Leistungsdaten

Düsenanschluss:

	Volumenstrom (I/min)						
Düsen- Nr.	1 -	2 bar	2,5 bar (0,25 MPa)	3 bar	4 bar	5 bar (0,5 MPa)	
D41892- POM-6	15,9	18,3	20,5	22,5	26	29	

Hinweis: Empfohlener Betriebsdruck: 2 – 4 bar (0,2 – 0,4 MPa).

Maße und Gewicht

Düsen-Nr.	А	В	SW	Gewicht
D41892	68 mm	37 mm	27	0,04 kg

Bestellhinweise

Tankreir	nigun	gsdüse	UniR	okon-Tan	kJet	D41892
D41892	_	B1/2	_	POM	_	6
l Düsen- typ		I An- schluss		I Werkstoff- Code		l Leistungs- größe

Kürzel "B" vor dem Anschluss einfügen, wenn BSPT-Anschluss gewünscht wird.

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

MicroRokon®-TankJet® D41990

ROTIERENDE TANKREINIGUNGSDÜSE

Kleine Rotationsdüse für eine vollflächige Reinigung

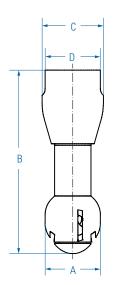
Konstruktionsmerkmale und Vorteile

- Für das Spülen von kleinen Tanks und Behältern mit einem Durchmesser bis 2 m bei niedrigem Druck und Volumenstrom
- Der Antrieb erfolgt durch das Reinigungsmedium
 kein Motor zum Antrieb des Rotationskopfs erforderlich
- Dank ihrer Micro-Bauweise passt die Düse durch sehr kleine Reinigungsöffnungen bis 25 mm
- Komplett aus rostfreiem Stahl 1.4404 für lange Lebensdauer und Korrosionsbeständigkeit
- Geeignet für den Einsatz bei hohen Betriebstemperaturen bis 150 °C
- · Einbaulage vertikal und horizontal möglich

MicroRokon Tankreinigungsdüse D41990 für Behälterdurchmesser bis 2 m

Spezifikationen Max. 2,0 m Tankdurchmesser: Volumen-9,4 bis 27,5 l/min strombereich: empf. Druckbereich: 1 bis 4 bar (0,1 bis 0,4 MPa) Max. Betriebs-150 °C temperatur:* Min. Behälter-Gewinde: 20 mm CIP-Anschluss: 50 mm öffnung: 180° zum Anschluss, 180° vom Spritzbedeckung: Anschluss weg, 360° Düsenanschluss: 3/8" NPT oder BSPT, CIP 182

Spritzbedeckung



- Tanks in der chemischen Industrie
- Getränkebehältern
- Flaschen
- Kanistern
- Nahrungsmittelbehältern
- Fässer/Trommeln
- Tauchbecken/Behältern

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

		Volumenstrom (I/min)									
Leistungs- größe	1 bar (0,1 MPa)	1,5 bar (0,15 MPa)	2 bar (0,2 MPa)	2,5 bar (0,25 MPa)	3 bar (0,3 MPa)	4 bar (0,4 MPa)					
3.2	9,4	10,5	11,5	12,4	13,2	14,7					
4.5	12,7	14,4	15,9	17,3	18,5	20,7					
6	16,9	19,2	21,2	23,1	24,6	27,5					

Maße und Gewichte#

Düsen- Nr.	Düsen- anschluss	А	В	С	D	Gewicht
	3/8"	18 mm	60 mm	20 mm	SW18	54 g
D41000	B 3/8"	18 mm	60 mm	20 mm	SW18	54 g
D41990	CIP 182	18 mm	63 mm	21,2 mm	SW18	54 g
	CIP 192	18 mm	63 mm	21,2 mm	SW18	54 g

Hinweis:

Splint Bohrungsdurchmesser 2,4 mm

Bestellhinweise

Tankreinig	jung	gsdüse N	licroRok	on-	TankJe	et D4	1990
D41990 E	_	B3/8	A 4	_	3.2	_	EX
I		1	1		I		1
Düsen- typ		Anschluss- größe	Werkstoff- Code		Leis- tungs- größe		ATEX Code

Kürzel "B" vor dem Anschluss einfügen, wenn BSPT-Anschluss gewünscht wird.

Hinweis zum Werkstoffcode: A4 = Rostfreier Stahl 1.4404

Tankreinigungsdüse MicroRokon-TankJet D41990										
D41990A	- 182	182 A4		3.2	_	EX				
I	I	1		1		I				
Düsen- typ	CIP An- schluss	Werk- stoff- Code*		Leis- tungs- größe		ATEX Code				

TankJet® 55

ROTIERENDER HYDRAULISCHER TANKREINIGER

Schnelle und kraftvolle Reinigung von Fässern und Kesseln

Konstruktionsmerkmale und Vorteile

- Kraftvolle Reinigung trotz geringer Durchflussmenge
- Entfernt auch hartnäckige Gärreste schnell und effektiv; Vollstrahldüsen rotieren in unterschiedlichen Ebenen für eine vollständige Bedeckung der Tankoberfläche
- Schnelle Reinigungszeit; 1 kompletter Reinigungszyklus dauert nur 16 Umdrehungen. Reinigung mehrerer Fässer innerhalb weniger Minuten möglich
- Kompakt und leicht einzuführen passt in kleine Tanköffnungen ab 44,5 mm.
- Kompatibel mit verschiedenen Pumpen inklusive Hochdruckreinigern
- · Langlebig durch Einsatz verschleissfester Werkstoffe (Edelstahl 316L - Dichtungen aus speziellem, leitfähigen PTFE)
- · Eigenantrieb kein externer Motor notwendig
- · Leichte Bedienung und einfacher Einbau
- Wahlweise:
 - Standardmodelle mit schneller Rotation und kurzem Reinigungszyklus
 - Sondermodelle mit langsamerer Rotation (längere Verweilzeit zur Reinigung hartnäckiger Gärreste)

Tankreiniger TankJet 55 für Tanks mit einem Durchmesser bis 1.5 m

Spezifikationen

1.5 m Tankdurchmesser:

Volumen-11 bis 30 l/min strombereich:

empf. Druckbereich: 13,8 bis 69 bar (1,3 bis 6,9 MPa)

Reinigungs-

2 bis 8 min zykluszeit:

Max. Betriebstemperatur:*

93 °C

Min. Behälter-

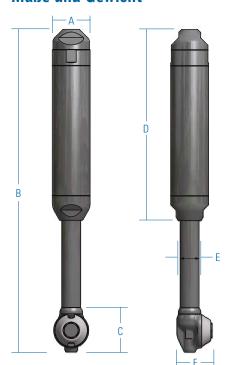
öffnung:

44,5 mm

Spritzbedeckung: 360°

3/8" NPT oder BSPT (IG) Düsenanschluss:

Spritzbedeckung


- Weinfässern
- Getränke- und Nahrungsmittelbehälter
- Lagertanks
- Fässer/Trommeln
- Kleine Tanks oder Kessel

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

				Volui	menstrom (I	/min)			
Modell Nr.	14 bar (1,4 MPa)	20 bar (2,0 MPa)	28 bar (2,8 MPa)	35 bar (3,5 MPa)	40 bar (4,0 MPa)	48 bar (4,8 MPa)	55 bar (5,5 MPa)	62 bar (6,2 MPa)	70 bar (7,0 MPa)
TJ55-046 Düsenöffnung 1,2 mm	_	_	-	_	-	_	11,7	12,5	12,9
Reinigungszeit*	_	_	_	_	_	_	8 min	5,5 min	4,5 min
TJ55-055 Düsenöffnung 1,4 mm	_	11,4	12,5	13,6	14,8	15,9	16,7	17,4	18,9
Reinigungszeit*	_	4 min	3 min	2,5 min	_	_	_	_	_
Reinigungszeit* SR**	_	8 min**	7 min**	6 min**	5 min**	4,5 min**	4 min**	3,5 min**	3 min**
TJ55-066 Düsenöffnung 1,7 mm	13,2	15,5	17,4	18,9	20	22	23	24	25
Reinigungszeit*	5 min	4 min	3 min	2,5 min	_	_	_		_
Reinigungszeit* SR**	_	_	_	7,5 min**	5,5 min**	4,5 min**	3,5 min**	3 min**	2 min**
TJ55-078 Düsenöffnung 2,0 mm	16,3	19,7	22	24	27	28	30	_	_
Reinigungszeit*	3,5 min	2 min	_	_		_	_	_	_
Reinigungszeit* SR**	_	_	6,5 min**	3,5 min**	3 min**	2,5 min**	2 min**	_	_

^{*} Komplette Reinigungszeit variiert und ist abhängig von der Dauer eines kompletten Reinigungszykluses. Ein kompletter Reinigungszyklus hat 16 Umdrehungen.

Maße und Gewicht

Α	В	С	D	E	F	Gewicht
44 mm	378 mm	52 mm	223 mm	22 mm	41 mm	2,5 kg

Bestellhinweise

Tan	Tankreinigungsdüse Tankjet 55										
TJ55B	055	_	SR*								
ı	1		1								
Düsen- typ	Düsenöffnung 0,046 = 1,2 mm 0,055 = 1,4 mm 0,066 = 1,7 mm 0,078 = 2,0 mm		Langsame Rotation								

Für BSPT-Gewinde "B" hinter dem Düsentyp einfügen

Bei den Standardmodellen ist die Gesamtreinigungszeit kürzer, weil der Reinigunszyklus kürzer ist.

^{**} Reinigungszeit bei SR Modellen (Slow rotation) ist insgesamt länger.

Längere Reinigungszyklen, längere Verweilzeiten und höheren Beaufschlagung als das Standardmodell bei gleichem Druck und gleichem Volumenstrom.

^{*} Wenn Ausführung mit langsamer Rotation gewünscht wird, bitte "SR" anhängen, sonst kein Kürzel.

TankJet® 21400A

ROTIERENDE TANKREINIGUNGSDÜSE MIT EIGENANTRIEB

Rotationsdüse für eine vollflächige Reinigung

Konstruktionsmerkmale und Vorteile

- Der von der Reinigungsflüssigkeit angetriebene
 Rotationskopf ist mit drei Flachstrahldüsen ausgestattet
- Die präzise Anordnung der Düsenöffnungen gewährleistet eine vollflächige Reinigung aller Innenflächen
- · Einbaulage vertikal und horizontal möglich
- Lange Standzeit durch korrosionsbeständige Werkstoffe

 Rostfreier Stahl AISI316SS mit Kugellagerkäfigen aus RY

 (Polyphenylensulfid) und kolsterisiertem rostfreiem Stahl

 AISI316SS sowie Lagerhülsen aus Edelstahl-PTFE-Composite
- Optimieren Sie die Betriebssicherheit durch einmalige Verwendung frisch angesetzter Reinigungslösung oder durch den Einsatz von Leitungsfiltern für eine partikelfreie Reinigungslösung
- Temperaturbeständig bis 177 °C

Tankreinigungsdüse TankJet 21400A für Behälterdurchmesser bis 1,5 m

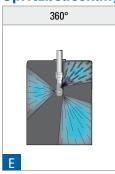
Spezifikationen

Tankdurchmesser:

Volumenstrombereich: 23 bis 82 l/min

empf.Druckbereich: 1 bis 4 bar (0,1 bis 0,4 MPa)

Max. Betriebstemperatur:* 177 °C

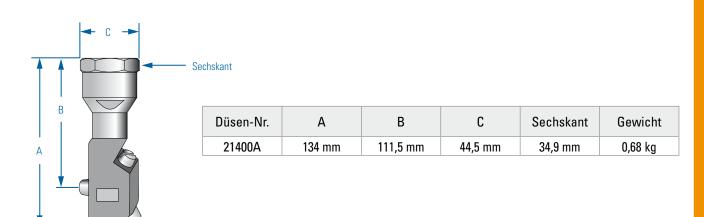

Min. Behälteröffnung: 60 mm

Spritzbedeckung: 360°

Düsenanschluss: 3/4" NPT oder BSPT (IG)

Ryton® ist ein eingetragenes Warenzeichen der Firma Chevron Phillips Chemical Company LLC.

Spritzbedeckung



- Fässern
- Tanks in der chemischen Industrie
- Bottichen in der Lebensmittelindustrie
- Prozessbehältern

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

	Volumenstrom (I/min)									
Leistungs- größe	1 bar (0,1 MPa)	1,5 bar (0,15 MPa)	2 bar (0,2 MPa)	2,5 bar (0,25 MPa)	3 bar (0,3 MPa)	4 bar (0,4 MPa)				
21400A-316SS10-316SS	23	28	32	36	39	46				
21400A-316SS18-316SS	41	50	58	65	71	82				

Maße und Gewicht

Bestellhinweise

Tankreinigungsdüse TankJet 21400A											
B21400A	- 316SS	18	- 316SS								
l I	1	1	1								
Düsen- typ	Werkstoff-Code für Lager und Käfige	Leistungs- größe	Werkstoff- Code								

Kürzel "B" vor dem Düsenanschluss einfügen, wenn BSPT-Anschluss gewünscht wird.

TankJet® VSM

FESTSTEHENDE TANKREINIGUNGSDÜSE

Leichte Kugelkopfdüse

Ideal für das Spülen bei niedrigen Volumenströmen

Konstruktionsmerkmale und Vorteile

- Feststehende Düsen sind besonders geeignet für das Spülen kleiner Behälter
- CIP-gerecht keine beweglichen Teile
- 40 Düsenöffnung gewährleisten eine 240° Spritzbedeckung
- Einbauposition beliebig
- Wirtschaftliche, effektive Reinigung
- Große Reinigungsleistung bei relativ geringem Flüssigkeitsverbrauch
- Große Werkstoffvielfalt
- Hervorragende chemische Beständigkeit durch Werkstoff Nylon

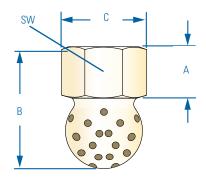
TankJet VSM Tankreinigungsdüse für Behälterdurchmesser bis 1.5 m

Spezifikationen Max. 1,5 m Tankdurchmesser: Volumen-1,9 bis 269 l/min strombereich: empf. Druckbereich: 0,7 bis 10 bar (0,07 bis 1,0 MPa) Max. Betriebs-100 °C temperatur:* Min. Behälter-32 mm bei 1/2" 48 mm bei 3/4" öffnung: Spritzbedeckung: 240° + 120° PA, PVDF, PTFE, Messing, 1.4305, Werkstoff: 1.4571, Hastelloy Düsenanschluss: 1/2" oder 3/4" G (BSPP) oder NPT

Spritzbedeckung

- Chemikalienbehältern
- Bottichen in der Pharmaindustrie

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit



		Volu	umenstrom F	lüssigkeit (l/r	min)		Austritts-		0 :
Düsen- Nr.	0,5 bar (0,05 MPa)	1 bar (0,1 MPa)	2 bar (0,2 MPa)	3 bar (0,3 MPa)	5 bar (0,5 MPa)	10 bar (1,0 MPa)	bohrung (mm)	An- schluss	Spritz- winkel
VSM-6	1,9	2,7	3,8	4,7	6,0	8,5	0,55	1/2"	120°
VSM-16	5,1	7,2	10,1	12,4	16,0	22,6	0,75	1/2"	120°
VSM-27	8,5	12,1	17,1	20,9	27,0	38,2	1,00	1/2"/ 3/4"	120°
VSM-53	16,8	23,7	33,5	41,1	53,0	74,9	1,50	1/2"/ 3/4"	120°
VSM-100	31,6	44,7	63,2	77,4	100,0	141,4	2,00	1/2"/ 3/4"	120°
VSM-28	8,8	12,5	17,7	21,7	28,0	39,5	0,80	1/2"	240°
VSM-44	13,9	19,7	27,9	34,1	44,0	62,3	1,00	1/2"	240°
VSM-90	28,5	40,3	56,9	69,7	90,0	127,3	1,50	1/2"/ 3/4"	240°
VSM-140	44,3	62,6	88,5	108,4	140,0	198,0	1,95	1/2"/ 3/4"	240°
VSM-190	60,1	85,0	120,2	147,2	190,0	268,7	2,30	1/2"/ 3/4"	240°

		Volumenstrom	Dampf (kg/h)		Volumenstrom Luft (m³/h)				
Düsen- Nr.	1 bar (0,1 MPa)	2 bar (0,2 MPa)	3 bar (0,3 MPa)	5 bar (0,5 MPa)	1 bar (0,1 MPa)	2 bar (0,2 MPa)	3 bar (0,3 MPa)	5 bar (0,5 MPa)	
VSM-6	5,0	7,3	8,8	13,5	6,0	9,0	12,1	18,1	
VSM-16	11,5	16,8	20,1	30,8	13,8	20,6	27,6	41,4	
VSM-27	18,8	27,7	33,0	50,6	22,6	34,0	45,4	68,1	
VSM-53	42,2	62,0	74,0	114,0	50,8	76,2	101,0	153,0	
VSM-100	75,3	111,0	132,0	202,0	90,7	136,0	181,0	271,0	
VSM-28	21,5	31,6	37,7	57,8	25,8	38,7	51,8	77,6	
VSM-44	33,8	49,7	59,3	91,0	40,8	61,1	81,5	101,4	
VSM-90	76,5	113,0	134,0	206,0	92,1	138,0	184,0	231,0	
VSM-140	134,0	197,0	235,0	360,0	162,0	242,0	323,0	484,0	
VSM-190	183,0	270,0	322,0	493,0	219,0	331,0	442,0	663,0	

Maße und Gewichte

Düsen-Nr.	Anschluss G oder NPT	Α	В	С	SW	Gewicht
VCM	1/2"	15 mm	45 mm	26 mm	27 mm	0,01 kg
VSM	3/4"	20 mm	62 mm	40 mm	41 mm	0,04 kg

Bestellhinweise

Tankr	einigung	gsdüse	TankJet	VSM
VSM-100 -	120	_	G3/4	- 1.4571
1	1		1	1
Düsen- typ	Spritz- winkel		Düsen- anschluss*	Werkstoff

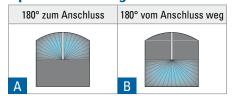
^{*}G1/2 bzw. G3/4 für G-Gewinde DIN ISO 228 NPT1/2 bzw. NPT3/4 für NPT-Gewinde

HS Rokon TankJet® D26564

SEHR SCHNELL ROTIERENDE TANKREINIGUNGSDÜSE

Hervorragende Reinigungsleistung

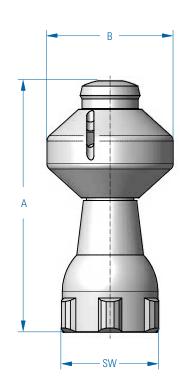
Konstruktionsmerkmale und Vorteile:


- Für das Spülen von kleinen Tanks und Behältern von 1 bis 1,5 m Durchmesser
- · Korrosions- und Chemikalienbeständig
- Einbau und Betrieb vertikal oder horizontal möglich
- · Werkstoff: PVDF

Tankreinigungsdüse HS Rokon für Behälterdurchmesser bis 1,5 m

Spezifikationen Max. 1 bis 1,5 m Tankdurchmesser: Volumen-9 bis 13 l/min strombereich: empf. Druckbereich: 1 bis 2 bar (0,1 bis 0,2 MPa) Max. 5 bar (0,5 MPa) **Druckbereich** Max. Betriebs-90 °C temperatur:* Min. Behälter-37 mm öffnung:: 180° zum Anschluss und Spritzbedeckung: vom Anschluss weg Düsenanschluss: 1/2" und 3/8" NPT oder BSPT (IG)

Spritzbedeckung


Hervorragend geeignet zur Reinigung von:

Kleinstbehältern

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

	Volumenstrom (I/min)				
Düsen- Nr.	1 bar (0,1 MPa)	2 bar (0,2 MPa)	3 bar (0,3 MPa)		
D26564	9	13	16		

Maße und Gewichte

Düsen- Nr.	An- schluss	А	Вø	SW	Gewicht
Daced	1/2"	70 mm	35 mm	27	0,04 kg
D26564	3/8"	70 mm	35 mm	24	0,04 kg

Bestellhinweise

Kürzel "B" vor dem Düsenanschluss einfügen, wenn BSPT-Anschluss gewünscht wird.

Hinweise zum Werkstoff-Codes: KY4 = PVDF + Leistungscode

TankJet® 23240

ROTIERENDE TANKREINIGUNGSDÜSE MIT EIGENANTRIEB

Kompakte rotierende Düsen für effizientes Spülen von Fässern und Trommeln

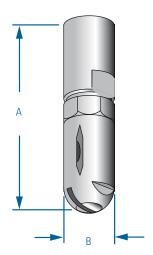
Konstruktionsmerkmale und Vorteile

- Zwei Bauformen sind lieferbar: Das Modell 23240-2 hat zwei seitliche Flachstrahlöffnungen für den Reinigungsstrahl, der gleichzeitig die Rotation des Düsenkopfes bewirkt. Beim Modell 23240-3 erzeugt eine Öffnung in der Stirnfläche einen zusätzlichen Reinigungsstrahl, so dass eine dreidimensionale Reinigung erreicht wird.
- Lange Standzeiten die Düse ist aus rostfreiem Stahl 316 gefertigt, die Lager und Lagerkäfige bestehen aus gehärtetem rostfreien Stahl 316
- Standardmäßig mit Lagerhülse aus Edelstahl-PTFE-Composite, optional auch Hülse aus PTFE erhältlich
- Temperaturbeständig bis 177 °C

Tankreinigungsdüse TankJet 23240 für Behälterdurchmesser bis 0,9 m

Spezifikationen Max. 0.9 m Tankdurchmesser: Volumen-14 bis 79 l/min strombereich: empf. Druckbereich: 1,5 bis 12 bar (0,15 bis 1,2 MPa) Max. Betriebs-177 °C temperatur:* Min. Behälter-26 mm öffnung: **Spritzbedeckung** Seitlich austretender Strahl 23240-2: **Spritzbedeckung** 360° 23240-3: Düsenanschluss: 1/2" NPT oder BSPT (IG)

Spritzbedeckung


360°	Seitlich austretender Strahl

- Fässern
- Zvlindern
- Rohrleitungen
- Abflusskanäle

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

	Volumenstrom (I/min)							
Düsen- Nr.	1,5 bar (0,15 MPa)	3 bar (0,3 MPa)	4 bar (0,4 MPa)	5 bar (0,5 MPa)	6 bar (0,6 MPa)	8 bar (0,8 MPa)	10 bar (1,0 MPa)	12 bar (1,2 MPa)
23240-2-316SS-5-316SS	14	19,7	23	25	28	32	36	39
23240-2-316SS-8-316SS	22	32	36	41	45	52	58	63
23240-3-316SS-5.7-316SS	15,9	22	26	29	32	37	41	45
23240-3-316SS-7-316SS	19,5	28	32	36	39	45	50	55
23240-3-316SS-10-316SS	28	39	45	51	56	64	72	79

Maße und Gewicht

Düsen-Nr.	А	В	Gewicht
23240	89 mm	25,4 mm	0,23 kg

Bestellhinweise

Ta	ankreinigu	ıngsdüse Taı	nkJet 2324	0
B23240 -	2 -	- 316SS	- 5 -	316SS
1	1	I	I	1
Düsen- typ	Spritz- bedeckung	Werkstoff-Code für Lager und Käfige	Leistungs- größe	Werkstoff- Code

Kürzel "B" vor dem Düsentyp einfügen, wenn BSPT-Anschluss gewünscht wird.

TankJet® 3150

FESTSTEHENDE TANKREINIGUNGSDÜSE

Fest montierte, selbstreinigende Düse für das Spülen von Fässern und Trommeln

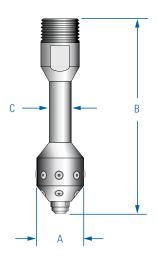
Konstruktionsmerkmale und Vorteile

- Feststehende Ausführung keine beweglichen Teile
- Zur Auswahl stehen Ausführungen mit 21 Vollkegeldüsen für eine 360° Spritzbedeckung oder mit 15 Vollkegeldüsen für 210° Spritzbedeckung
- Einbauposition beliebig
- · Langlebige, korrosionsbeständige Bauweise
- Die Düse hat einen "Hals" mit 19 mm Durchmesser, damit das Reinigungsmedium auch durch übliche Trommelöffnungen ablaufen kann

Tankreinigungsdüse TankJet 3150 für Behälterdurchmesser bis 0,9 m

Spezifikationen Max. 0,9 m Tankdurchmesser: Volumen-23 bis 91 l/min strombereich: empf. Druckbereich: 1 bis 10 bar (0,1 bis 1,0 MPa) Max. Betriebs-100 °C temperatur:* Min. Behälter-51 mm öffnung: Mit 21 Düsen für 360° Spritzbedeckung Spritzbedeckung: Mit 15 Düsen für 210° Spritzbedeckung Messing, Stahl, rostfreier Stahl 303, Werkstoffe: Stahl, rostfreier Stahl 316 Düsenanschluss: 1" NPT oder BSPT (AG)

Spritzbedeckung


<u> </u>	
210°	360°

- Fässern
- Behältern
- Trommeln
- Rohrleitungen
- Kesseln

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

	Max. freier				Volumenst	rom (I/min)			
Düsen- Nr.	Querschnitt (mm)	1 bar (0,1 MPa)	2 bar (0,2 MPa)	3 bar (0,3 MPa)	4 bar (0,4 MPa)	5 bar (0,5 MPa)	6 bar (0,6 MPa)	7 bar (0,7 MPa)	10 bar (1,0 MPa)
3150-15	1,0	23	32	39	44	49	54	57	67
3150-21	1,0	31	43	52	59	66	73	77	91

Maße und Gewicht

Düsen-Nr.	Αø	В	С	Gewicht
3150	43 mm	167 mm	19 mm	0,68 kg

Bestellhinweise

Ta	nkreir	nigungsdüse T	ankJet 3150
B3150	_	SS	15
1		I	1
Düsen- typ		Werkstoff- Code	Anzahl Vollkegel- Düsenmundstücke

 $\label{prop:control} \textit{K\"{u}}\textit{rzel } \textit{,} \textit{B''} \textit{ vor dem D\"{u}}\textit{sentyp einf\"{u}}\textit{gen, wenn BSPT-Anschluss gew\"{u}}\textit{nscht wird.}$

TankJet® 36640

ROTIERENDE TANKREINIGUNGSDÜSE MIT EIGENANTRIEB

Kompakte rotierende Düsen für eine zylindrische Spritzbedeckung

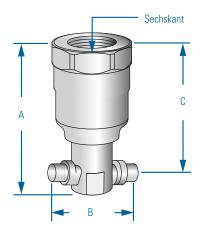
Konstruktionsmerkmale und Vorteile

- Die Düse wird durch die Reinigungsflüssigkeit in Rotation versetzt. Zwei Flachstrahl-Düsenmundstücke mit seitlichem Strahlaustritt erzeugen eine zylindrische Spritzbedeckung
- · Einbauposition beliebig
- Lange Lebensdauer Düsen erhältlich aus rostfreiem Stahl mit Lagern und Käfigen aus gehärtetem rostfreiem Stahl
- · Messing, Stahl oder rostfreier Stahl 303 bzw. 316 möglich

Tankreinigungsdüse TankJet 36640 für Behälterdurchmesser bis 0,9 m

Spezifikationen Max. 0,9 m Tankdurchmesser: Volumen-3,4 bis 7,9 l/min strombereich: empf. Druckbereich: 1 bis 4 bar (0,1 bis 0,4 MPa) Max. Betriebs-93 °C temperatur:* Min. Behälter-26 mm öffnung: Spritzbedeckung: Seitlich austretender Strahl Düsenanschluss: 1/4" NPT oder BSPT (IG)

Spritzbedeckung


- Zylindern
- Rohrleitungen

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

Leistungsdaten

	Volumenstrom (I/min)					
Düsen- Nr.	1 bar (0,1 MPa)	1,5 bar (0,15 MPa)	2 bar (0,2 MPa)	2,5 bar (0,25 MPa)	3 bar (0,3 MPa)	4 bar (0,4 MPa)
36640-1.7-SS	3,4	4,9	5,3	6,1	6,8	7,9

Maße und Gewicht

Düsen-Nr.	Α	B Dia.	С	Sechskant	Gewicht
36640	47,6 mm	25,4 mm	39,7 mm	22,2 mm	0,09 kg

Bestellhinweise

Tank	Tankreinigungsdüse TankJet 36640				
B36640	_	1.7	_	SS	
ı		1		1	
Düsen- typ		Leistungs- größe		Werkstoff- Code	

Kürzel "B" vor dem Düsentyp einfügen, wenn BSPT-Anschluss gewünscht wird.

TankJet® 15498

FESTSTEHENDE TANKREINIGUNGSDÜSE

Fest montierte, selbstreinigende Düse für das Spülen von Fässern

Konstruktionsmerkmale und Vorteile

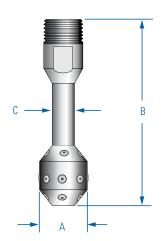
- Feststehende Ausführung keine beweglichen Teile
- Zur Auswahl stehen Ausführungen mit 21 Vollkegeldüsen für eine 360° Spritzbedeckung oder mit 15 Vollkegeldüsen für 210° Spritzbedeckung
- Die Reinigungsflüssigkeit läuft durch den schmalen Hals ab
- · Einbauposition beliebig
- Langlebige, korrosionsbeständige Bauweise;
 Werkstoff rostfreier Stahl 303 bzw. 316

TankJet 15498 Tankreinigungsdüse für Behälterdurchmesser bis 0,6 m

Spezifikationen Max. 0,6 m Tankdurchmesser: Volumen-23 bis 43 l/min strombereich: empf. Druckbereich: 5 bis 10 bar (0,5 bis 1,0 MPa) Max. Betriebs-100 °C temperatur:* Min. Behälter-51 mm öffnung: Mit 21 Düsen für 360° Spritzbedeckung Spritzbedeckung: Mit 15 Düsen für 210° Spritzbedeckung Düsenanschluss: 1" NPT oder BSPT (AG)

Spritzbedeckung

Hervorragend geeignet zur Reinigung von:


- Behältern
- Trommeln
- Fässern
- Rohrleitungen

^{*} abhängig vom Siededruck der Reinigungsflüssigkeit

Leistungsdaten

	Volumenstrom (I/min)				
Düsen- Nr.	Max. freier Querschnitt (mm)	5 bar (0,5 MPa)	6 bar (0,6 MPa)	7 bar (0,7 MPa)	10 bar (1,0 MPa)
15498-15-SS	2,4	23	25	26	31
15498-21-SS	2,4	31	34	36	43

Maße und Gewicht

Düsen-Nr.	А	В	С	Gewicht
15498	35 mm	156 mm	16 mm	0,51 kg

Bestellhinweise

Tank	Tankreinigungsdüse TankJet 15498				
B15498	_	15	_	SS	
1		1		1	
Düsen- typ		Anzahl Vollkegel- Düsenmundstücke		Werkstoff- Code	

Kürzel "B" vor dem Düsentyp einfügen, wenn BSPT-Anschluss gewünscht wird.

TankJet® Zubehör

Leichtere Montage, optimale Systemleistung

Klemm-Schiebeflansche für Tankreiniger TANKJET AA190 und AA090

Konstruktionsmerkmale und Vorteile

- Maximieren die Reinigungswirkung durch gezielte Positionierung des Rotationskopfes für eine Reinigung im Bereich von Einbauten, Schmutzrändern oder sonstigen Bereichen, die eine höhere Aufprallkraft erfordern
 - Mit den Standard-Klemm-/Schiebeflanschen kann der Rotationskopf in unterschiedlichen Arbeitshöhen fixiert werden (abhängig von der Schaftlänge)
 - Schwenk-Schiebeflansche ermöglichen eine radiale Verstellung des Reinigungskopfes bis zu 60°
- Unterschiedliche Anschlussmöglichkeiten: Tri-Clamp Flansch, Klemmflansch, Festflansch

Adapter und Montagesätze

Konstruktionsmerkmale und Vorteile

- Konischer Kegelstutzen für ein einfaches Einführen des TankJet 360 in Tankfahrzeuge mit Mannlöchern der Größe 432 bis 533 mm; aus rostfreiem Stahl 304
- Chemikalienbeständiger Adapter ermöglicht die Verwendung der Tankreiniger TankJet AA090 oder AA190 mit Druckluftoder Elektromotor in Tanks mit Reinigungsöffnungen von 2" bis 4"
- Für einfache Befestigung eines Standardklemmflansches, Modell TankJet AA190 4". Inhalt Montagesatz: Festflansch 4" aus rostfreiem Stahl 316, Sicherungsscheibe aus rostfreiem Stahl, Schrauben und PTFE-Dichtung

Klemm-Schiebeflansch

Für den Einsatz bei den Tankreinigungsaggregaten TankJet AA090 und AA190

Verstellbarer Festflansch

für Tanks mit Flanschverbindung. Lieferbar in den Größen 2", 3" oder 4"

Schwenk-Schiebeflansch

Lieferbar in den Größen 4" oder 6" auch als hygienegeeignete Version in 4" lieferbar

Kegelstutzen

Mit Entlüftungsrohr zur Druckentlastung, Schutzblech (verhindert Eindringen von Flüssigkeit in die Entlüftung) und abnehmbarem Stopfen, der eine Befüllung des Konus zur Gewichtserhöhung ermöglicht.

Komplett mit Flansch, Sicherungsscheiben, Schrauben und Dichtung

Universal-Kegelstutzen für **Tankreiniger TankJet AA190 und AA090**

Größe 159 mm AD (6.25") OD, bestehend aus Celcon® mit Schrauben aus rostfreiem Stahl 304

Celcon® ist ein eingetragenes Warenzeichen der Celanese Corporation.

Bestellhinweise

Klemm-Schiebeflansch				
39205	_	3	_	316SS
1		1		1
Modell Nr.		Flanschgröße		Werkstoff-Code

Kle	Klemm-Schiebeflansch		
22250	_	316SS	
l I		1	
Modell Nr.		Werkstoff-Code	

Universal-Kegelstutzen				
45260	_	CE		
l I		1		
Modell Nr.		Werkstoff-Code		

	Kegelstutzen	
46573	_	SS
I		1
Modell Nr.		Werkstoff-Code

Verstellbarer Festflansch				
46395	_	4	_	316SS
l I		1		I
Modell Nr.		Flanschgröße		Werkstoff-Code

Schwenk-Schiebeflansch				
43047	- 4	- 316SS		
1	1	1		
Modell Nr.	Flanschgröß	Se Werkstoff-Code		

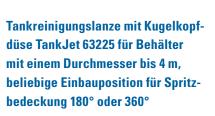
Montagesatz						
39204	_	4	_	316SS		
I		1		1		
Modell Nr.		Flanschgröße		Werkstoff-Code		

Maße und Gewichte

Modell Nr.	Länge	Außendurchmesser	Gewicht		
Klemm-Schiebeflansch mit Tri-Clamp A	-				
39205-2-1/2	121 mm	3" (76 mm)	0,9 kg		
39205-3	121 mm	3.6" (91 mm)	0,95 kg		
39205-4	121 mm	4.7" (119 mm)	1,1 kg		
39205-6	121 mm	6.6" (168 mm)	2,4 kg		
Klemm-/Schiebeflansch			, ,		
22250	103 mm	5" (127 mm)	1,3 kg		
Verstellbarer Festflansch für Tanks mit Flanschverbindung					
46395-2	122 mm	6" (152 mm)	5,4 kg		
46395-3	125 mm	7.5" (191 mm)	5,9 kg		
46395-4	127 mm	9" (229 mm)	8,0 kg		
Schwenk-Schiebeflansch					
43047-4	172 mm	9" (229 mm)	9,1 kg		
43047-6	172 mm	11" (279 mm)	13,6 kg		
Kegelstutzen mit beiderseitigem Ansch	iluss 1-1/2" NPT (AG)				
46573	1.168 mm	22" (559 mm)	34,0 kg		
Universal-Kegelstutzen					
45260	81 mm	6.25" (159 mm)	0,45 kg		
Montagesatz					
39204	24 mm	9" (229 mm)	6,8 kg		

Tankreinigungslanzen

Effiziente Versorgung der Tankreinigungsdüsen mit Reinigungsflüssigkeit


Konstruktionsmerkmale und Vorteile

- Anpassbar an Ihre Anforderungen. Zur Auswahl stehen: Art der Tankreinigungsdüse, Rohrlänge, Flanschtyp/ -anschlüsse, Werkstoff
- Die Zusammenarbeit mit nur einem Lieferanten bietet nicht nur den Vorzug aufeinander abgestimmter Komponenten, sondern gewährleistet auch eine optimale Systemleistung

Tankreinigungslanze mit konstanter Geschwindigkeit TankJet D40159 für Reinigungs- und Spülaufgaben

Spezifikationen TankJet® Tank-

reinigungsdüse:

TankJet Düse oder Sprühkugel nach Wahl

Anschlüsse:

Zur Auswahl stehen NPT- bzw. BSPT-Anschlüsse, Camlook-Kupplung, Festflansche oder

Tri-Clamp-Anschlüsse

Rohrdurchmesser und -länge:

Nach Kundenangabe

Werkstoffe:

Werkstoff für die einzelnen Komponenten nach Kundenangabe z.B. rostfreier Stahl, PTFE, PVDF, Messing, Polypropylen, Hastelloy

Leitungsfilter für TankJet® Produkte

Für eine einwandfreie Systemleistung

Konstruktionsmerkmale und Vorteile

- Reduzieren Verstopfungen an Tankreinigern und Tankreinigungsdüsen
- Entfernen Verunreinigungen aus der Reinigungsflüssigkeit und gewährleisten so den kontinuierlichen Antrieb der Rotationskönfe
- · Verlängern die Standzeit von Düsen, Ventilen und Pumpen
- Große Auswahl an Ausführungen für Hochleistung, Hochdruck-Hochleistung, Selbstreinigung, und eine Vielzahl von Maschengrößen

Modell TW:

- Große Filtersiebfläche für wirkungsvolle Filterung
- Geringer Wartungsaufwand
- Abnehmbare Bodenkappe oder Stopfen zum Ausbau des Filtersiebes
- Statt des Bodenstopfens kann auf Wunsch ein Ablasshahn zum Spülen des Filters geliefert werden

Modell TWC – wie TW, außerdem:

- Ausgelegt für große Volumenströme bei minimalem Druckverlust
- Separater Gewindeanschluss für Manometer

Modell 8310A:

- Ausgelegt für Hochdruck-Anwendungen
- Abnehmbarer Bodenstopfen ermöglicht einfaches Spülen des Filters

Selbstreinigender Filter für Anwendungen mit hohen Volumenströmen:

- Gestattet die Verwendung niedriger Wasserqualitäten bei minimaler Verstopfungsgefahr für die Düsen
- Große Auswahl an Modellen und Ausführungen
- Volumenströme bis 6662 I/min
- Große Filterfläche absorbiert die meisten
 Verunreinigungen und ermöglicht lange Reinigungsintervalle
- Minimale Wassermenge zum Spülen erforderlich, ohne Beeinträchtigung des Hauptwasserstroms
- Einfache Bedienung und Wartung

Leitungsfilter, Modell TW

Selbstreinigender Filter

Kompatibilitätsübersicht Leitungsfilter

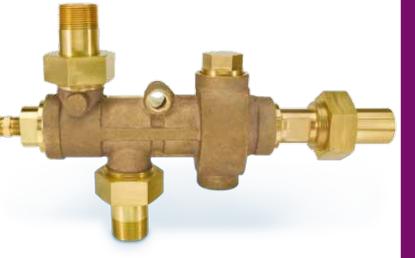
Modell-Nr./ Bezeichnung	1/2TW Hoch- leistungs- filter	1TW Hoch- leistungs- filter	1-1/2TW Hoch- leistungs- filter	2-1/2TW Hoch- leistungs- filter	3TWC Hoch- leistungs- filter	8310A-1/2 Hoch- leistungs- filter
Tankreiniger TankJet 360					•	
Tankreiniger TankJet 180					•	
Tankreiniger TankJet AA290		•			•	
Tankreiniger TankJet 80			•			
Tankreiniger TankJet 65			•			
Tankreiniger TankJet AA190		•				•
Tankreiniger TankJet 75		•				
Düsen TankJet 27500/28500	•	•	•			
Düsen TankJet 12900		•	•	•	•	
Düsen TankJet D26984/ D40159		•				•
Düsen TankJet D41800E		•				•
Düsen TankJet 6353		•	•			
Tankreiniger TankJet AA090	•					•
Düsen TankJet 18250A		•	•			
Düsen TankJet D41892		•				•
Düsen TankJet D41990	•					
Düsen TankJet 21400A		•				•
Düsen TankJet 15498/3150	•			•		
Düsen TankJet 36640	•					
Düsen TankJet 23240	•	•				
Einbau	Sa	aug- oder Druck	seite der Pumpe	bis 9 bar (0,9 MI	Pa)	Druckseite
Max. Volumenstrom bei 0,35 bar (0,035 MPa) Druckverlust	42 l/min	119 l/min	271 l/min	517 l/min	_	80 l/min bei einem Druck von 2,5 bar

Bitte wenden Sie sich an unsere Verkaufsbüros, wenn Sie weitere Informationen über selbstreinigende Filter wünschen.

Empfohlene Maschengrößen

Düsentyp	Empfohlene Maschengröße
Tankreiniger mit Motorantrieb	min. 100
Rotierend hydraulisch (Turbinenantrieb)	30 bis 50
Rotierend hydraulisch (Eigenantrieb und konstante Drehzahl)	min. 200
Feststehend (stationär)	Abhängig von Düsengröße

Umrechnungstabelle Maschenzahl

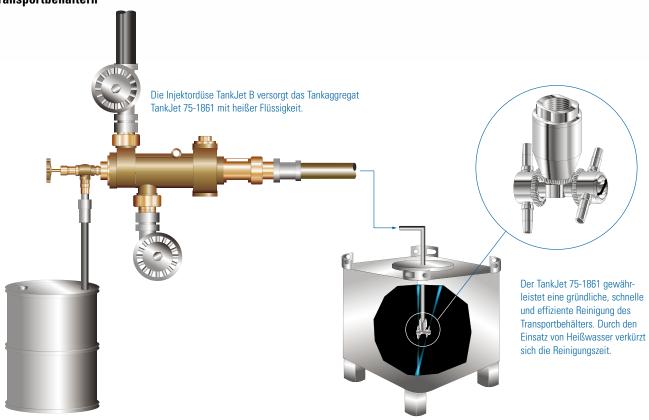

Maschenzahl	μm	mm
16	1.200	1,2
20	840	0,84
30	580	0,58
50	280	0,29
60	240	0,24
80	170	0,17
100	140	0,14
200	80	0,08

Injektordüse TankJet® B

Mischt Dampf und Kaltwasser zu einem zielgerichteten Hochdruckstrahl mit hoher Temperatur

Konstruktionsmerkmale und Vorteile

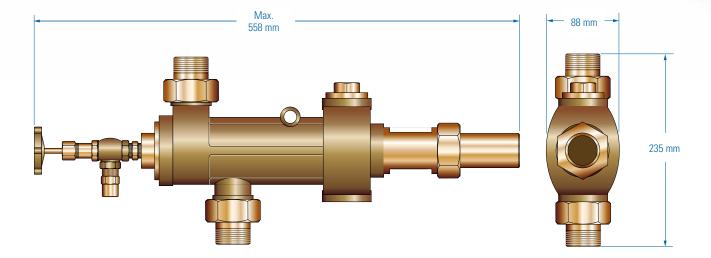
- Ideale Medienversorgung für Tankreinigungsaggregate und kundenspezifische Düsenrohre
- Kein Kontakt zum Tank: geeignet für den Einsatz mit kaltem Stadtwasser bei niedrigem Druck und mit Dampf aus dem anlagenseitigen Versorgungsnetz
- Erzeugt einen Hochdruck-Flüssigkeitsstrahl von hoher Temperatur
- Höherer Druck gewährleistet höhere Aufprallkraft für die Abreinigung hartnäckiger Rückstände
- Höhere Temperatur beschleunigt die Reinigung durch schnelles Ablösen der Verschmutzung
- · Teure Pumpen und Wärmetauscher sind nicht erforderlich
- Integriertes Überströmventil für einen sicheren Betrieb
- Ermöglicht ein präzises Dosieren von Chemikalien oder Reinigungsmitteln über ein Regulierventil für eine maximale Reinigungswirkung


Injektordüse TankJet B Für Volumenströme am Flüssigkeitsausgang bis 129 l/min

Arbeitsweise Ein Überströmventil verhindert gefährliche Unfälle aufgrund von berstenden Rohrleitungen oder Blockaden im weiteren Rohrverlauf. Der in die Kammer einströmende Dampf vermischt Das heiße Wasser durchströmt das Venturirohr und dehnt sich anschließend aus. Die Geschwindigkeit des fließenden Wassers sich mit dem kalten Wasser. sinkt, gleichzeitig steigt jedoch der Druck im Abnahmerohr. Das abgegebene heiße Wasser steht unter höherem Druck als das zugeführte kalte Wasser. Der Temperaturanstieg im Vergleich zum Kaltwasserzulauf kann bis zu 43°C betragen. Die abgegebene Flüssigkeit dient zur Medienversorgung Optional kann ein Reinigungsmittel in den Heißwasserstrom von Tankreinigungsaggregaten und Düsenrohren. dosiert werden. Das kalte Wasser kondensiert den Heißdampf schlagartig - es entsteht ein Vakuum. Das kalte Wasser absorbiert die Hitze und Geschwindigkeit des Dampfs. so dass nunmehr heißes Wasser bei hoher

Geschwindigkeit fließt.

Anwendungsbeispiel


Einsatz der Injektordüse TankJet B zur Reinigung von Transportbehältern

Leistungsdaten

		Eingangs-Dampfdruck bar (MPa)				
		3,4 (0,34)	5,2 (0,52)	6,9 (0,69)	8,6 (0,86)	10,3 (1,03)
Modell-Nr.	Dampf-					
TankJet Injektordüse	Volumenstrom (kg/h)	8,3 (0,83)	11,7 (1,17)	15,2 (1,52)	19,3 (1,93)	23,4 (2,34)
TJB-4	73 bis 182	15,1	17	om am Flüssigkeitsau 21	23	25
TJB-4	73 bis 182	15,1	17	21	23	25
TJB-7	127 bis 318	26	30	34	40	45
TJB-9	163 bis 408	34	45	49	57	62
TJB-15	318 bis 680	57	76	91	102	110
TJB-20	363 bis 907	76	95	110	121	129

Maße

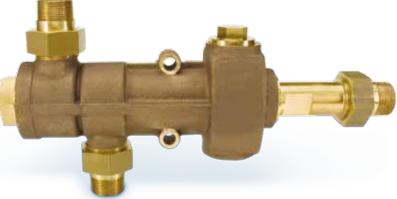
Spezifikationen	
Eingangsdruck Dampf:	3,4 bis 10,3 bar (0,34 bis 1,03 MPa)
Volumenstrom Dampf:	73 bis 907 kg/h
Max. Flüssigkeits- druck am Ausgang:	8,3 bis 23,4 bar (0,83 bis 2,34 MPa)
Volumenstrom Flüssigkeit:	15 bis 128,7 l/min
Max. Flüssigkeits- temperatur am Ausgang:	82 °C
Düsenanschluss:	Dampf: 1-1/4" NPT oder BSPT (AG); Wasser: 1-1/4" NPT oder BSPT (AG); Reinigungsmittel: 1/2" NPT oder BSPT (AG)
Anschlüsse Ausgang:	Flüssigkeit: 3/4" NPT oder BSPT (IG); Überstromleitung: 1" NPT (IG) oder BSPT (AG)
Gewicht:	11 kg
Werkstoffe:	Messing, Reinigungsmittelrohr aus rostfr. Stahl 303, O-Ring aus EP

Bestellhinweise

Injektordüse TankJet B							
TJB – 4 –*							
ı		1		1			
Injektor-Nr.		Modell Typ		Anschluss			

* Kürzel "B" einfügen, wenn BSPT-Anschluss gewünscht wird. Für NPT-Anschluss frei lassen.

Kombinationsmöglichkeiten Tankreinigungsdüsen/Injektordüse TankJet B


Trankreinigungs	düsen TankJet	Düsen-typ/ -größe	Passender Injektor	Eingangsdampfdruck Injektor (bar/MPa)	Betriebsdruck Tankreinigungsdüsen (bar/MPa)	Volumenstrom Tankreinigungsdüsen (I/min)
,000		С	TJB-15	4,1 – 10,3 (0,41 – 1,03)	3,4 - 10,3 (0,34 - 1,03)	64 – 110
		C	TJB-20	3,4 - 10,3 (0,34 - 1,03)	4,8 - 13,8 (0,48 - 1,38)	76 – 129
(1)	TJ-14	G, H	TJB-15	3,8 - 10,3 (0,38 - 1,03)	3,4 - 11,7 (0,34 - 1,17)	61 – 110
7	13-14	О, П	TJB-20	3,4 - 8,6 (0,34 - 0,86)	5,5 - 13,8 (0,55 - 1,38)	76 – 121
27:		D	TJB-15	3,4 - 9,7 (0,34 - 0,97)	4,1 - 13,8 (0,41 - 1,38)	57 — 106
	ט	TJB-20	3,4 - 6,2 (0,34 - 0,62)	7,6 – 13,8 (0,76 – 1,38)	76 – 106	
		С	TJB-15	4,1 – 10,3 (0,41 – 1,03)	3,4 - 13,1 (0,34 - 1,03)	64 – 110
		C	TJB-20	3,4 - 7,6 (0,34 - 0,76)	5,5 - 13,8 (0,55 - 1,38)	76 – 114
	TJ-19	D	TJB-15	3,4 - 10,3 (0,34 - 1,03)	3,4 - 13,8 (0,34 - 1,38)	57 – 110
CT DO		U	TJB-20	3,4 - 6,9 (0,34 - 0,69)	6,2 - 13,8 (0,62 - 1,38)	76 – 110
\\ \ //			TJB-9	5,2 - 10,3 (0,52 - 1,03)	3,4 - 6,2 (0,34 - 0,62)	45 – 62
	13-19	G	TJB-15	3,4 - 8,3 (0,34 - 0,83)	5,5 - 13,8 (0,55 - 1,38)	57 – 98
41179			TJB-20	3,4 - 5,9 (0,34 - 0,59)	9,0 - 13,8 (0,90 - 1,38)	76 – 98
•			TJB-9	4,1 – 10,3 (0,41 – 1,03)	3,4 - 6,9 (0,34 - 0,69)	38 – 62
Q.)		Н	TJB-15	3,4 - 6,9 (0,34 - 0,69)	6,2 - 13,8 (0,62 - 1,38)	57 – 91
			TJB-20	3,4 - 4,8 (0,34 - 0,48)	10,3 - 13,8 (1,03 - 1,38)	76 – 91
		234	TJB-15	5,2 - 8,6 (0,52 - 0,86)	10,3 - 20,7 (1,03 - 2,07)	76 – 102
		234	TJB-20	3,4 - 6,2 (0,34 - 0,62)	10,3 - 20,7 (1,03 - 2,07)	76 – 102
	TJ-75-	234LP	TJB-9	6,9 - 10,3 (0,69 - 1,03)	3,4 - 8,3 (0,34 - 0,83)	49 – 62
	1858	ZJ4LF	TJB-15	3,4 - 4,8 (0,34 - 0,48)	6,9 - 10,3 (0,69 - 1,03)	57 – 72
1111		172	TJB-15	3,4 - 6,2 (0,34 - 0,62)	10,3 – 20,7 (1,03 – 2,07)	57 – 83
		172LP	TJB-9	4,1 - 8,6 (0,41 - 0,86)	4,8 - 10,3 (0,48 - 1,03)	38 – 57
The state of		172	TJB-15	7,6 – 10,3 (0,76 – 1,03)	10,3 – 14,5 (1,03 – 1,45)	95 – 110
		172	TJB-20	5,2 – 10,3 (0,52 – 1,03)	10,3 – 19,3 (1,03 – 1,93)	95 – 132
(3)	T 1 20	172LP	TJB-9	5,2 – 10,3 (0,52 – 1,03)	3,4 - 6,2 (0,34 - 0,62)	45 – 62
	TJ-75- 1861	1/2L1	TJB-15	3,4 - 5,9 (0,34 - 0,59)	5,5 – 10,3 (0,55 – 1,03)	57 – 79
		125	TJB-15	3,8 - 6,6 (0,38 - 0,66)	10,3 – 20,7 (1,03 – 2,07)	61 – 87
		125LP	TJB-7	6,9 - 10,3 (0,69 - 1,03)	3,4 - 6,9 (0,34 - 0,69)	34 – 45
		IZJLF	TJB-9	3,4 - 8,6 (0,34 - 0,86)	3,4 - 9,7 (0,34 - 0,97)	34 – 57

Injektordüse TankJet® BX

Mischt Dampf und Kaltwasser zu einem zielgerichteten Hochdruckstrahl mit hoher Temperatur

Konstruktionsmerkmale und Vorteile

- Ideale Medienversorgung für Tankreinigungsaggregate und kundenspezifische Düsenrohre
- Kein Kontakt zum Tank: geeignet für den Einsatz mit kaltem Stadtwasser bei niedrigem Druck und mit Dampf aus dem anlagenseitigen Versorgungsnetz
- Erzeugt einen Hochdruck-Flüssigkeitsstrahl von hoher Temperatur
- Höherer Druck gewährleistet höhere Aufprallkraft für die Abreinigung hartnäckiger Rückstände
- Höhere Temperatur beschleunigt die Reinigung durch schnelles Ablösen der Verschmutzung
- Teure Pumpen und Wärmetauscher sind nicht erforderlich
- Integriertes Überströmventil für einen sicheren Betrieb
- Ermöglicht ein präzises Dosieren von Chemikalien oder Reinigungsmitteln über ein Regulierventil für eine maximale Reinigungswirkung

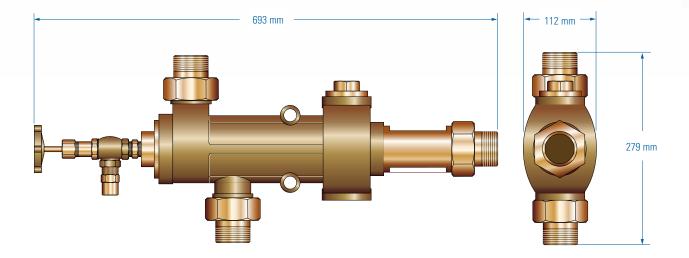
Injektordüse TankJet BX
Für Volumenströme am Flüssigkeitsausgang bis 416 l/min

Arbeitsweise Ein Überströmventil verhindert gefährliche Unfälle aufgrund von berstenden Rohrleitungen oder Blockaden im weiteren Rohrverlauf. Der in die Kammer einströmende Dampf vermischt Das heiße Wasser durchströmt das Venturirohr und dehnt sich anschließend aus. Die Geschwindigkeit des fließenden Wassers sich mit dem kalten Wasser. sinkt, gleichzeitig steigt jedoch der Druck im Abnahmerohr. Das abgegebene heiße Wasser steht unter höherem Druck als das zugeführte kalte Wasser. Der Temperaturanstieg im Vergleich zum Kaltwasserzulauf kann bis zu 43°C betragen. Die abgegebene Flüssigkeit dient zur Medienversorgung Optional kann ein Reinigungsmittel in den Heißwasserstrom von Tankreinigungsaggregaten und Düsenrohren. dosiert werden. Das kalte Wasser kondensiert den Heißdampf schlagartig - es entsteht ein Vakuum. Das kalte Wasser absorbiert die Hitze und Geschwindigkeit des Dampfs. so dass nunmehr heißes Wasser bei hoher Geschwindigkeit fließt.

Anwendungsbeispiel

Einsatz der Injektordüse Tank.Jet BX zur Reinigung
von Eisenbahnwaggons

Die Injektordüse Tank.Jet BX versorgt
das Tank.Jet 360 mit
heißer Flüssigkeit.


Der Tank.Jet 360 gewährleistet eine gründliche, schnelle
und effiziente Reinigung des Waggons. Durch den Einsatz

Leistungsdaten

		Eingangs-Dampfdruck bar (MPa)					
		3,4 (0,34)	5,2 (0,52)	6,9 (0,69)	8,6 (0,86)	10,3 (1,03)	
Modell-Nr.	Dampf-	Max. Flüssigkeits-Ausgangsdruck bar (MPa) 8,3 (0,83) 11,7 (1,17) 15,2 (1,52) 19,3 (1,93) 23,4 (2,3) Volumenstrom am Flüssigkeitsausgang (I/min)					
TankJet Injektordüse	Volumenstrom (kg/h)						
				m um riudolgkolloude	,gag (,,,		
TJBX-30	454–1361	114	132	170	189	208	
TJBX-30 TJBX-50	454–1361 771–2041	114 189		-		208	

von Heißwasser verkürzt sich die Reinigungszeit.

Maße

Spezifikationen	
Eingangsdruck Dampf:	3,4 bis 10,3 bar (0,34 bis 1,03 MPa)
Volumenstrom Dampf:	454 bis 2722 kg/h
Max. Flüssigkeits- druck am Ausgang:	8,3 bis 23,4 bar (0,83 bis 2,34 MPa)
Volumenstrom Flüssigkeit:	114 bis 416 l/min
Max. Flüssigkeits- temperatur am Ausgang:	82 °C
Düsenanschluss:	Dampf: 1-1/2" NPT oder BSPT (AG); Wasser: 1-1/2" NPT oder BSPT (AG); Reinigungsmittel: 1/2" NPT oder BSPT (AG)
Anschlüsse Ausgang:	Flüssigkeit: 1-1/2" NPT oder BSPT (AG); Überstromleitung: 2" NPT (IG) oder BSPT (AG)
Gewicht:	22 kg
Werkstoffe:	Messing, Reinigungsmittelrohr aus rostfr. Stahl 303, O-Ring aus EP

Bestellhinweise

Injektordüse TankJet BX						
TJBX	_	30	_	*		
1		1		1		
Injektor-Nr.		Modell Typ		Anschluss		

^{*} Kürzel "B" einfügen, wenn BSPT-Anschluss gewünscht wird. Für NPT-Anschluss frei lassen.

Kombinationsmöglichkeiten Tankreinigungsdüsen/Injektordüse TankJet Bx

Trankreinigungsdüsen TankJet		Düsen-typ/ -größe	Passender Injektor	Eingangsdampfdruck Injektor (bar/MPa)	Betriebsdruck Tankreinigungsdüsen (bar/MPa)	Volumenstrom Tankreinigungsdüsen (I/min)
-		C, D, G	TJBX30	6,9 - 10,3 (0,69 - 1,03)	4,1 - 6,9 (0,41 - 0,69)	170 – 208
	TJ-16		TJBX50	3,4 - 10,3 (0,34 - 1,03)	5,5 - 13,8 (0,55 - 1,38)	189 – 303
I		Н	TJBX30	5,2 - 10,3 (0,52 - 1,03)	3,4 – 7,6 (0,34 – 0,76)	132 – 208
			TJBX50	3,4 - 8,6 (0,34 - 0,86)	6,6 - 13,8 (0,66 - 1,38)	189 – 283
	TJ-65	1/4 (6.4)	TJBX30	3,4 - 10,3 (0,34 - 1,03)	3,4 - 8,3 (0,34 - 0,83)	114 – 208
			TJBX50	3,4 - 5,2 (0,34 - 0,52)	7,2 – 9,7 (0,72 – 0,97)	189 – 227
		5/16 (7.9)	TJBX50	5,2 - 10,3 (0,52 - 1,03)	4,8 – 7,9 (0,48 – 0,79)	227 – 303
			TJBX70	3,4 - 6,9 (0,34 - 0,69)	6,2 - 10,3 (0,62 - 1,03)	265 – 341
		3/8 (9.5)	TJBX50	5,2 - 10,3 (0,52 - 1,03)	3,8 - 6,6 (0,38 - 0,66)	227 – 303
			TJBX70	3,4 - 8,6 (0,34 - 0,86)	5,2 - 10,3 (0,52 - 1,03)	265 – 379
	TJ-65-HT	1/4 (6.4)	TJBX70	3,4 - 10,3 (0,34 - 1,03)	4,0 - 9,3 (0,48 - 0,93)	265 – 416
		5/16 (7.9)	TJBX70	3,4 - 10,3 (0,34 - 1,03)	3,8 – 7,9 (0,38 – 0,79)	265 – 416
The state of the s		3/8 (9.5)	TJBX70	6,9 - 10,3 (0,69 - 1,03)	3,8 - 5,2 (0,38 - 0,52)	341 – 416
		3/8 (9.5)	TJBX50	3,4 - 10,3 (0,34 - 1,03)	3,4 - 9,0 (0,34 - 0,9)	189 – 303
			TJBX70	3,4 - 6,2 (0,34 - 0,62)	7,0 – 10,3 (0,70 – 1,03)	265 – 322
- 170		7/16 (11.1)	TJBX50	6,2 - 10,3 (0,62 - 1,03)	4,5 – 7,2 (0,34 – 0,72)	246 – 303
			TJBX70	3,4 - 7,9 (0,34 - 0,79)	5,5 – 10,3 (0,55 – 1,03)	265 – 360
	TJ-80-3		TJBX50	5,2 - 10,3 (0,52 - 1,03)	4,1 – 8,6 (0,41 – 0,86)	227 – 303
0		5/16 (7.9)	TJBX70	3,4 - 6,9 (0,34 - 0,69)	6,6 - 10,3 (0,66 - 1,03)	265 – 341
		3/8 (9.5)	TJBX70	7,9 – 10,3 (0,79 – 1,03)	4,7 – 7,6 (0,47 – 0,76)	360 – 416
	TJ-360-2	1/4 (6.4)	TJBX30	3,4 - 10,3 (0,34 - 1,03)	2,8 - 10,3 (0,28 - 1,03)	114 – 208
			TJBX50	3,4 - 10,3 (0,34 - 1,03)	8,3 - 23,4 (0,83 - 2,34)	189 – 303
		9/32 (7.1)	TJBX30	5,2 - 10,3 (0,52 - 1,03)	2,8 – 7,6 (0,28 – 0,76)	132 – 208
			TJBX50	3,4 - 10,3 (0,34 - 1,03)	5,5 – 15,2 (0,55 – 1,52)	189 – 303
			TJBX70	3,4 - 8,6 (0,34 - 0,86)	11,7 – 24,1 (1,17 – 2,41)	265 –379
		5/16 (7.9)	TJBX30	7,9 - 10,3 (0,79 - 1,03)	2,8 - 3,8 (0,28 - 0,38)	151 – 284
			TJBX50	3,4 - 10,3 (0,34 - 1,03)	4,1 - 10,7 (0,41 - 1,07)	189 – 303
			TJBX70	3,4 - 10,3 (0,34 - 1,03)	8,3 - 20,0 (0,83 - 2,00)	265 – 416
		3/8 (9.5)	TJBX50	4,1 – 10,3 (0,41 – 1,03)	2,8 - 6,2 (0,28 - 0,62)	208 – 303
			TJBX70	3,4 - 10,3 (0,34 - 1,03)	4,8 - 11,4 (0,48 - 1,14)	265 – 416
		7/16 (11.1)	TJBX70	3,4 - 10,3 (0,34 - 1,03)	3,1 – 7,2 (0,31 – 0,72)	265 – 416
		1/2 (12.7)	TJBX70	5,2 - 10,3 (0,52 - 1,03)	2,8 - 5,2 (0,28 - 0,52)	303 – 416
		9/16 (14.3)	TJBX70	6,2 - 10,3 (0,62 - 1,03)	2,8 - 3,8 (0,28 - 0,38)	341 – 416
	TJ-360-3	1/4 (6.4)	TJBX30	6,2 – 10,3 (0,62 – 1,03)	2,8 - 5,0 (0,28 - 0,5)	151 – 208
			TJBX50	3,4 – 10,3 (0,34 – 1,03)	4,1 – 10,7 (0,41 – 1,07)	189 – 303
			TJBX70	3,4 – 10,3 (0,34 – 1,03)	8,3 – 20,0 (0,83 – 2,0)	265 – 416
		9/32 (7.1)	TJBX50	3,4 – 10,3 (0,34 – 1,03)	2,8 – 7,6 (0,28 – 0,76)	189 – 303
			TJBX70	3,4 – 10,3 (0,34 – 1,03)	5,5 – 14,1 (0,55 – 1,41)	265 – 416
		5/16 (7.9)	TJBX50	4,5 – 10,3 (0,45 – 1,03)	2,8 – 5,5 (0,28 – 0,55)	208 – 303
			TJBX70	3,4 – 10,3 (0,34 – 1,03)	4,1 – 10,3 (0,41 – 1,03)	265 – 416
		3/8 (9.5)	TJBX70	3,4 – 10,3 (0,34 – 1,03)	2,8 - 6,2 (0,28 - 0,62)	265 – 416
		7/16 (11.1)	TJBX70	6,9 - 10,3 0,62 - 1,03)	2,8 – 4,1 (0,28 – 0,41)	341 – 416

Notizen

I .	
T. Committee of the Com	
I	
•	
1	
-	
I	
-	
I .	
L	
I .	
L	
I	
•	
I .	
L	
ı	
I	
I	
I.	

Notizen
The state of the s
I and the second
T Company of the Comp

Spray Nozzles

Control

Spray Analysis

Spray Fabrication

Spraying Systems Deutschland GmbH Großmoorkehre 1 D-21079 Hamburg

Tel: +49 (0)40-766 001-0 Fax: +49 (0)40-766 001-233 E-Mail: info@spray.de Internet: www.spray.de Spraying Systems Austria GmbH Am Winterhafen 13 A-4020 Linz

Tel: +43 (0)732-776 540 Fax: +43 (0)732-776 540-10 E-Mail: info@spraying.at Internet: www.spraying.at SSCO-Spraying Systems AG Eichenstr. 6 CH-8808 Pfäffikon

Tel: +41 (0)55-410 10-60 Fax: +41 (0)55-410 39-30 E-Mail: info.ch@spray.com Internet: www.ssco.ch

